Compare commits

..

4 commits

Author SHA1 Message Date
d8f35c562c
WIP 2025-06-29 22:00:31 +02:00
d7dbc95a7b
Added f4ll as submodule 2025-06-29 14:20:58 +02:00
90b332a1cc
Removed f4ll subrepo 2025-06-29 14:16:44 +02:00
27af775a37
git subrepo pull components/f4ll
subrepo:
  subdir:   "components/f4ll"
  merged:   "3e904a2"
upstream:
  origin:   "ssh://git@codeberg.org/abody/f4ll.git"
  branch:   "master"
  commit:   "3e904a2"
git-subrepo:
  version:  "0.4.9"
  origin:   "???"
  commit:   "???"
2025-06-16 19:58:16 +02:00
29 changed files with 17 additions and 1871 deletions

3
.gitmodules vendored Normal file
View file

@ -0,0 +1,3 @@
[submodule "components/f4ll"]
path = components/f4ll
url = ssh://git@codeberg.org/abody/f4ll.git

View file

@ -127,7 +127,7 @@ void MX_FREERTOS_Init(void)
__weak void StartDefaultTask(void const *argument)
{
/* USER CODE BEGIN StartDefaultTask */
app_main(NULL);
app_main();
/* Infinite loop */
for (;;) {
osDelay(1);

View file

@ -13,15 +13,17 @@
#ifdef __cplusplus
#include <f4ll/console_handler.h>
#include <f4ll/singleton.h>
#include <task.h>
#include <thread_safe_console_output.h>
class app : public f4ll::initialized_singleton<app>, public f4ll::console_handler::iconsole_input
class app : public f4ll::singleton<app>, public f4ll::console_handler::iconsole_input
{
friend class f4ll::initialized_singleton<app>;
friend class f4ll::singleton<app>;
private:
app(void const *param);
app();
public:
__attribute__((noreturn)) void main();
@ -49,7 +51,7 @@ private:
extern "C" {
#endif // __cplusplus
void app_main(void const *param) __attribute__((noreturn));
void app_main() __attribute__((noreturn));
#ifdef __cplusplus
} // extern "C" {

View file

@ -15,18 +15,21 @@
#include <f4ll/console_handler.h>
#include <f4ll/str_util.h>
#include <f4ll/fault.h>
#include <f4ll/irq_lock.h>
#include <stdlib.h>
#include <string.h>
#include <app.h>
void app_main(void const *param)
void app_main()
{
app::init(param).main();
app::instance().main();
}
app::app(void const *param)
app::app()
: m_con(
f4ll::console_handler::init(
USART2, DMA1, LL_DMA_STREAM_5, LL_DMA_STREAM_6, m_rx_buf_mem, sizeof(m_rx_buf_mem), m_tx_buf_mem, sizeof(m_tx_buf_mem),
@ -34,7 +37,6 @@ app::app(void const *param)
m_safe_conout(m_con)
{
(void)param;
}
void app::main()

1
components/f4ll Submodule

@ -0,0 +1 @@
Subproject commit 80fc520b6fad8a012e239efca77f33f759337344

View file

@ -1,37 +0,0 @@
BasedOnStyle: LLVM
UseTab: Never
IndentWidth: 4
TabWidth: 4
BreakBeforeBraces: Custom
AllowShortFunctionsOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: true
AllowShortLambdasOnASingleLine: true
AllowAllArgumentsOnNextLine: true
IndentCaseLabels: true
AccessModifierOffset: -4
NamespaceIndentation: None
FixNamespaceComments: false
PackConstructorInitializers: Never
AlignAfterOpenBracket: AlwaysBreak
InsertBraces: true
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
AfterControlStatements: true
AfterFunctionDefinitionName: false
BraceWrapping:
AfterClass: true # false
AfterControlStatement: false
AfterEnum: false # false
AfterFunction: true # false
AfterNamespace: false
AfterObjCDeclaration: true # false
AfterStruct: true # false
AfterUnion: true # false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
ColumnLimit: 140

View file

@ -1,4 +0,0 @@
CMakeFiles/
CMakeCache.txt
build.ninja
cmake_install.cmake

View file

@ -1,12 +0,0 @@
; DO NOT EDIT (unless you know what you are doing)
;
; This subdirectory is a git "subrepo", and this file is maintained by the
; git-subrepo command. See https://github.com/ingydotnet/git-subrepo#readme
;
[subrepo]
remote = ssh://git@codeberg.org/abody/f4ll.git
branch = master
commit = f86c164de5c279c378c5cde408af5fe75497c474
parent = d72d3af2a7e99af89780fcfa66071f99db11c766
method = merge
cmdver = 0.4.9

View file

@ -1,22 +0,0 @@
cmake_minimum_required(VERSION 3.22)
add_library(f4ll STATIC
src/console_handler.cpp
src/crc_handler.cpp
src/dma_helper.cpp
src/fault.cpp
src/memcpy_dma.cpp
src/packet_usart.cpp
src/ringbuffer.cpp
src/str_util.cpp
src/usart_core.cpp
)
target_include_directories(f4ll PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/inc
)
target_link_libraries(f4ll PUBLIC platform stm32cubemx)
# ST code quality workaround - Suppres register storage class warning (C++17...)
target_compile_options(f4ll PRIVATE -Wno-register)

View file

@ -1,65 +0,0 @@
/*
* ll_consolehandler.h
*
* Created on: Nov 7, 2019
* Author: abody
*/
#pragma once
#include <f4ll/initialized_singleton.h>
#include <f4ll/ringbuffer.h>
#include <f4ll/usart_core.h>
#include <platform/dma_ll.h>
namespace f4ll {
class console_handler : public usart_core, public initialized_singleton<console_handler>
{
friend class initialized_singleton<console_handler>;
public:
using size_type = iringbuffer::size_type;
class iconsole_input
{
public:
virtual void input_available(size_type len) = 0;
};
void print(char const *s);
void flush();
size_type append(char const *s);
iringbuffer &get_rx_buffer() { return m_rx_buffer; }
private:
console_handler(
USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx, uint8_t *rx_buffer, size_type x_buffer_size,
uint8_t *tx_buffer, size_type tx_buffer_size, iconsole_input *rx_callback);
void setup_receive(void);
// LL_UsartCore pure virtual function implementations
virtual void receiver_idle(void) override;
virtual void transmission_complete(void) override;
virtual void framing_error(void) override;
virtual void overrun(void) override;
virtual void rx_dma_transfer_complete(void) override;
virtual void rx_dma_half_transfer(void) override;
virtual void rx_dma_error(dma_helper::dma_error_type reason) override;
virtual void tx_dma_transfer_complete(void) override;
virtual void tx_dma_half_transfer(void) override;
virtual void tx_dma_error(dma_helper::dma_error_type reason) override;
ringbuffer_ext m_tx_buffer;
size_type m_bytes_sent = 0;
ringbuffer_ext m_rx_buffer;
size_type m_bytes_requested = 0;
size_type m_reqd_bytes_registered = 0;
iconsole_input *m_rx_callback;
};
} /* namespace f4ll */

View file

@ -1,92 +0,0 @@
/*
* ll_crc_handler.h
*
* Created on: Oct 26, 2019
* Author: compi
*/
#pragma once
#include <inttypes.h>
#include <platform/dma_ll.h>
#include <f4ll/dma_helper.h>
#include <f4ll/initialized_singleton.h>
namespace f4ll {
class crc_handler : public initialized_singleton<crc_handler>
{
friend class initialized_singleton<crc_handler>;
public:
struct icallback
{
virtual void crc_succeeded(uintptr_t callback_param, uint32_t crc, uint8_t task) = 0;
virtual void crc_failed(uintptr_t callback_param, uint32_t crc, uint8_t task) = 0;
};
class slot_base
{
friend class crc_handler;
public:
struct crc_task
{
void const *m_address; // changed to nullptr when execution starts
uint16_t m_word_count;
icallback *m_callback;
uintptr_t m_callback_param;
};
private:
slot_base volatile *m_next = nullptr;
uint8_t m_task_count;
virtual crc_task volatile &operator[](int index) volatile = 0;
protected:
slot_base(unsigned int task_count)
: m_task_count(task_count)
{
}
slot_base() = delete;
slot_base(slot_base const &other) = delete;
};
template <uint8_t n> class slot : public slot_base
{
public:
slot()
: slot_base(n)
{
}
virtual crc_task volatile &operator[](int index) volatile { return m_tasks[index]; }
private:
slot::crc_task m_tasks[n];
};
void attach_slot(slot_base &slot);
bool enqueue(slot_base &slot, uint8_t task, void const *address, uint16_t len, icallback *cb, uintptr_t cb_param);
uint32_t compute(slot_base &slot, uint8_t task, void const *address, uint16_t len);
bool is_active(slot_base &slot, uint8_t task) const;
bool is_queued(slot_base &slot, uint8_t task) const;
bool is_running(slot_base &slot, uint8_t task) const;
void dma_transfer_completed(void);
private:
crc_handler(DMA_TypeDef *dma, uint32_t stream);
void start_next_task(void);
void wait_results(slot_base &slot, uint8_t task) const;
dma_helper m_dma;
slot_base volatile *m_first_slot = nullptr;
slot_base volatile *m_active_slot = nullptr;
int volatile m_active_task;
};
} // namespace f4ll

View file

@ -1,58 +0,0 @@
/*
* ll_dmahelper.h
*
* Created on: Oct 25, 2019
* Author: abody
*/
#pragma once
#include <inttypes.h>
#include <platform/dma_ll.h>
namespace f4ll {
class dma_helper
{
public:
dma_helper(DMA_TypeDef *dma, uint32_t stream);
dma_helper(dma_helper const &base) = default;
inline DMA_TypeDef *get_dma() const { return m_dma; }
inline uint32_t get_stream() const { return m_stream; }
inline volatile uint32_t *get_is_reg() const { return m_is_reg; }
inline volatile uint32_t *get_ifc_reg() const { return m_ifc_reg; }
inline uint32_t get_fe_mask() const { return m_fe_masks[m_stream]; }
inline uint32_t get_dme_mask() const { return m_dme_masks[m_stream]; }
inline uint32_t get_te_mask() const { return m_te_masks[m_stream]; }
inline uint32_t get_ht_mask() const { return m_ht_masks[m_stream]; }
inline uint32_t get_tc_mask() const { return m_tc_masks[m_stream]; }
inline bool is_enabled_it_ht() const { return LL_DMA_IsEnabledIT_HT(m_dma, m_stream) != 0; }
inline bool is_enabled_it_te() const { return LL_DMA_IsEnabledIT_TE(m_dma, m_stream) != 0; }
inline bool is_enabled_it_tc() const { return LL_DMA_IsEnabledIT_TC(m_dma, m_stream) != 0; }
inline bool is_enabled_it_dme() const { return LL_DMA_IsEnabledIT_DME(m_dma, m_stream) != 0; }
inline bool is_enabled_it_fe() const { return LL_DMA_IsEnabledIT_FE(m_dma, m_stream) != 0; }
enum class dma_error_type { transfer, direct_mode, fifo };
private:
DMA_TypeDef *m_dma;
uint32_t const m_stream;
volatile uint32_t * const m_is_reg;
volatile uint32_t * const m_ifc_reg;
static constexpr uint32_t const m_fe_masks[8] = {DMA_LISR_FEIF0, DMA_LISR_FEIF1, DMA_LISR_FEIF2, DMA_LISR_FEIF3,
DMA_HISR_FEIF4, DMA_HISR_FEIF5, DMA_HISR_FEIF6, DMA_HISR_FEIF7};
static constexpr uint32_t const m_dme_masks[8] = {DMA_LISR_DMEIF0, DMA_LISR_DMEIF1, DMA_LISR_DMEIF2, DMA_LISR_DMEIF3,
DMA_HISR_DMEIF4, DMA_HISR_DMEIF5, DMA_HISR_DMEIF6, DMA_HISR_DMEIF7};
static constexpr uint32_t const m_te_masks[8] = {DMA_LISR_TEIF0, DMA_LISR_TEIF1, DMA_LISR_TEIF2, DMA_LISR_TEIF3,
DMA_HISR_TEIF4, DMA_HISR_TEIF5, DMA_HISR_TEIF6, DMA_HISR_TEIF7};
static constexpr uint32_t const m_ht_masks[8] = {DMA_LISR_HTIF0, DMA_LISR_HTIF1, DMA_LISR_HTIF2, DMA_LISR_HTIF3,
DMA_HISR_HTIF4, DMA_HISR_HTIF5, DMA_HISR_HTIF6, DMA_HISR_HTIF7};
static constexpr uint32_t const m_tc_masks[8] = {DMA_LISR_TCIF0, DMA_LISR_TCIF1, DMA_LISR_TCIF2, DMA_LISR_TCIF3,
DMA_HISR_TCIF4, DMA_HISR_TCIF5, DMA_HISR_TCIF6, DMA_HISR_TCIF7};
};
} /* namespace f4ll */

View file

@ -1,44 +0,0 @@
#pragma once
#define FAULT_REASON_HARD_FAULT 1
#define FAULT_REASON_MEMMANAGE_FAULT 2
#define FAULT_REASON_BUS_FAULT 3
#define FAULT_REASON_USAGE_FAULT 4
#ifdef __cplusplus
extern "C" {
#endif
typedef struct
{
uint32_t R0;
uint32_t R1;
uint32_t R2;
uint32_t R3;
uint32_t R4;
uint32_t R5;
uint32_t R6;
uint32_t R7;
uint32_t R8;
uint32_t R9;
uint32_t R10;
uint32_t R11;
uint32_t R12;
uint32_t SP;
uint32_t LR;
uint32_t PC;
uint32_t xPSR;
uint32_t PSP;
uint32_t MSP;
uint32_t EXC_RETURN;
uint32_t CONTROL;
} fault_context_t;
extern fault_context_t g_fault_context;
void app_fault_callback(uint32_t reason);
__attribute__((noreturn)) void fault_handler(uint32_t type, fault_context_t *context);
#ifdef __cplusplus
}
#endif

View file

@ -1,27 +0,0 @@
#pragma once
#include <utility>
namespace f4ll {
template <typename T> class initialized_singleton
{
public:
static T &instance() { return *m_instance; }
template <typename... args_t> static T &init(args_t &&...args)
{
static T instance{std::forward<args_t>(args)...};
m_instance = &instance;
return instance;
}
protected:
initialized_singleton() = default;
initialized_singleton(const initialized_singleton &) = delete;
initialized_singleton &operator=(const initialized_singleton &) = delete;
static T *m_instance;
};
template <typename T> T *initialized_singleton<T>::m_instance = nullptr;
} // namespace f1ll {

View file

@ -1,23 +0,0 @@
#pragma once
#include <inttypes.h>
#include <stm32f4xx.h>
namespace f4ll {
class irq_lock
{
public:
inline irq_lock()
: m_primask(__get_PRIMASK())
{
__disable_irq();
}
inline void release() { __set_PRIMASK(m_primask); }
inline ~irq_lock() { __set_PRIMASK(m_primask); }
private:
uint32_t m_primask;
};
}

View file

@ -1,29 +0,0 @@
/*
* llmemcpydma.h
*
* Created on: Nov 4, 2019
* Author: abody
*/
#pragma once
#include <cstdint>
#include <f4ll/dma_helper.h>
#include <f4ll/initialized_singleton.h>
namespace f4ll {
class memcpy_dma : public initialized_singleton<memcpy_dma>, private dma_helper
{
friend class initialized_singleton<memcpy_dma>;
public:
void *copy(void *dst, void const *src, uint16_t length);
void dma_transfer_completed();
private:
memcpy_dma(DMA_TypeDef *dma, uint32_t stream);
bool volatile m_busy = false;
};
} // namespace f4ll

View file

@ -1,122 +0,0 @@
/*
* ll_HsUsart.h
*
* Created on: Oct 29, 2019
* Author: abody
*/
#pragma once
#include <platform/usart_ll.h>
#include <f4ll/crc_handler.h>
#include <f4ll/usart_core.h>
namespace f4ll {
struct DMAINFO;
class packet_usart : public crc_handler::icallback, public usart_core
{
// friend class UsartCore;
public:
packet_usart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx);
struct packet_header
{ // !!! size should be multiple of 4 !!!
uint8_t start_byte;
uint8_t serial;
uint8_t payload_length;
uint8_t hash;
};
struct packet
{
packet_header header;
uint8_t payload[256 + sizeof(uint32_t)]; // extra room for crc32
} __attribute__((aligned));
struct stats
{
uint32_t overrun = 0;
uint32_t hdr_error = 0;
uint32_t payload_errror = 0;
uint32_t pep1 = 0;
uint32_t pep2 = 0;
uint32_t rx_dma_error = 0;
uint32_t tx_dma_error = 0;
uint32_t rcvd = 0;
uint32_t premature_hdr = 0;
uint32_t premature_payload = 0;
uint32_t sent = 0;
uint32_t skiped = 0;
};
struct ihs_usart_callback
{
virtual bool packet_received(packet_usart *caller, uintptr_t user_param, packet const &packet) = 0;
};
// crc_handler::ICallback interface functions
virtual void crc_succeeded(uintptr_t callback_param, uint32_t crc, uint8_t task) override;
virtual void crc_failed(uintptr_t callback_param, uint32_t crc, uint8_t task) override;
void post_packet(uint8_t const *payload, uint8_t length, bool wait_for_crc_queue = true);
void setup_receive(void);
void rx_processed(bool second);
// Getters
uint8_t *get_tx_packet_buffer(void) { return m_tx_buffer.pkt.payload; }
uint8_t const *get_rx_packet_buffer(bool second) { return m_rx_buffers[second].pkt.payload; }
USART_TypeDef *get_usart(void) const { return m_usart; }
stats const &get_stats(void) const { return m_stats; }
inline bool is_tx_busy(void) const { return m_tx_buffer.busy; }
inline bool is_tx_failed(void) const { return m_tx_buffer.error; }
inline bool is_rx_busy(bool second) const { return m_rx_buffers[second].busy; }
inline bool is_rx_failed(bool second) const { return m_rx_buffers[second].error; }
void set_callback(ihs_usart_callback *callback, uintptr_t callback_param);
private:
void build_header(packet &packet, uint8_t serial_nr, uint8_t length);
bool check_header(packet_header &header);
void switch_rx_buffers(void);
// UsartCore pure virtual function implementations
virtual void receiver_idle(void) override;
virtual void transmission_complete(void) override;
virtual void framing_error(void) override;
virtual void overrun(void) override;
virtual void rx_dma_transfer_complete(void) override;
virtual void rx_dma_half_transfer(void) override;
virtual void rx_dma_error(dma_helper::dma_error_type reason) override;
virtual void tx_dma_transfer_complete(void) override;
virtual void tx_dma_half_transfer(void) override;
virtual void tx_dma_error(dma_helper::dma_error_type reason) override;
struct Buffer
{
packet pkt;
// transfer area ends here
bool volatile busy = 0;
bool volatile error = 0;
uint16_t requested_length = 0;
uint32_t error_info = 0;
};
static const uint8_t STARTMARKER = 0x95;
uint8_t m_rx_serial_nr = -1;
uint8_t m_tx_serial_nr = -1;
stats m_stats;
bool m_rx_buffer_selector = false;
crc_handler::slot<2> m_crc_slot;
ihs_usart_callback *m_user_callback = nullptr;
uintptr_t m_user_callback_param = 0;
Buffer m_tx_buffer;
Buffer m_rx_buffers[2];
};
}

View file

@ -1,133 +0,0 @@
/*
* ringbuffer.h
*
* Created on: May 31, 2025
* Author: Attila Body
*/
#pragma once
#include <cstddef>
#include <cstdint>
namespace f4ll {
class iringbuffer
{
public:
using size_type = size_t;
/// @brief Copies data to the ring buffer (without committing it)
/// @param data Pointer to the data to copy
/// @param len Length of the data to copy
/// @retval Length of the data copied (differs when not all data can fit)
virtual size_type put(uint8_t const *data, size_type len) = 0;
/// @brief Commits the data already placed into the buffer and notifies the
/// consumer about it's availability
virtual void commit() = 0;
/// @brief Waits until all the data from the ring buffer gets consumed.
// void flush();
/// @brief Gets a pointer to the next chunk of committed data in the buffer
/// without registering the consumption.
/// The caller should also call report_consumption using the returned
/// chunk length after it finished processing the data.
/// @param[out] data Receives a pointer to the first byte of the available
/// data in the buffer
/// @param[out] len Receives the length of the chunk available in the buffer.
/// Will not exceed len_requested.
/// @retval true if the buffer has more available data, false otherwise.
virtual bool get_chunk(uint8_t const *&data, size_type &len) const = 0;
/// @brief Marks the chunk returned by ringbuffer_GetChunk as available.
/// @param consumed The length of the chunk as returned by
/// ringbuffer_GetChunk(..., len)
virtual void consumed(size_type len) = 0;
/// @brief Gets a pointer to the next free chunk in the buffer
/// @retval Pointer to the beginning of the next free buffer chmemory area
/// @param[out] len Receives the length of the returned buffer area.
virtual uint8_t *get_free_chunk(size_type &len) = 0;
/// @brief Registers the data written in the free buffer chunk.
/// IMPORTANT: Do not call put() after start modifying the buffer
/// returned by get_free_chunk() before registering the written data by
/// calling supplied()
/// @param len The length of the data written in the buffer
virtual bool produced(size_type len) = 0;
/// @brief Returns the number of uncommited bytes in the ring buffer.
virtual size_type uncommited() const = 0;
/// @brief Returns the number of commited bytes in the ring buffer.
virtual size_type commited() const = 0;
/// @brief Discards the uncommited data in the ring buffer.
virtual void discard() = 0;
/// @brief Returns the size of the internal buffer.
/// One byte in the buffer is always reserved as separator
virtual size_type size() const = 0;
/// @brief Returns the size of the used place in the buffer
// (including non-commited data)
virtual size_type used() const = 0;
/// @brief Returns the free storage capacity of the buffer
virtual size_type unused() const = 0;
};
//
class ringbuffer_ext : public iringbuffer
{
public:
ringbuffer_ext(uint8_t *bptr, size_type bsize);
size_type put(uint8_t const *data, size_type len) override;
void commit() override;
bool get_chunk(uint8_t const *&data, size_type &len) const override;
void consumed(size_type len) override;
uint8_t *get_free_chunk(size_type &len) override;
bool produced(size_type len) override;
size_type uncommited() const override;
size_type commited() const override;
void discard() override;
size_type size() const override;
size_type used() const override;
size_type unused() const override;
private:
uint8_t *m_buffer; //!< Data bufer
size_type const m_bsize; //!< Data buffer size
size_type m_head = 0; //!< Write position
size_type m_head_shadow = 0; //!< Shadowed write position for collecting data
//!< before committing it
size_type m_tail = 0; //!< Read position
size_type marker_diff(size_type m1, size_type m2) const;
size_type max_chunk_len() const;
};
//
template <iringbuffer::size_type SZ> class ringbuffer : public ringbuffer_ext
{
public:
ringbuffer();
private:
uint8_t m_buffer[SZ];
};
//
template <iringbuffer::size_type SZ>
ringbuffer<SZ>::ringbuffer()
: ringbuffer_ext(m_buffer, SZ)
{
}
} // namespace f1ll

View file

@ -1,28 +0,0 @@
/*
* strutil.h
*
* Created on: Feb 11, 2017
* Author: compi
*/
#pragma once
#include <stddef.h>
#include <inttypes.h>
#ifdef __cplusplus
extern "C" {
#endif
//////////////////////////////////////////////////////////////////////////////
size_t strcpy_ex(char *dst, char const *src);
size_t uitodec(char* buffer, uint32_t data);
size_t uitohex(char* buffer, uint32_t data, uint8_t chars);
size_t itodec(char* buffer, int data);
size_t itohex(char* buffer, int data);
void strrev(char *first, char *last);
char tochr(const uint8_t in, const uint8_t upper);
#ifdef __cplusplus
}
#endif

View file

@ -1,54 +0,0 @@
/*
* ll_dmadrivenusartcore.h
*
* Created on: Nov 4, 2019
* Author: abody
*/
#pragma once
#include <platform/usart_ll.h>
#include <f4ll/dma_helper.h>
namespace f4ll {
class usart_core
{
public:
static inline void usart_isr(usart_core *_this) { _this->usart_isr(); }
static inline void rx_dma_isr(usart_core *_this) { _this->rx_dma_isr(); }
static inline void tx_dma_isr(usart_core *_this) { _this->tx_dma_isr(); }
void setup_transmit(void const *buffer, uint16_t length);
void setup_receive(void *buffer, uint16_t length);
protected:
usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx);
USART_TypeDef *m_usart;
dma_helper m_rx_dma;
dma_helper m_tx_dma;
private:
// these functions are called from interrup context!
virtual void receiver_idle(void) = 0;
virtual void transmission_complete(void) = 0;
virtual void framing_error(void) = 0;
virtual void overrun(void) = 0;
virtual void rx_dma_transfer_complete(void) = 0;
virtual void rx_dma_half_transfer(void) = 0;
virtual void rx_dma_error(dma_helper::dma_error_type reason) = 0;
virtual void tx_dma_transfer_complete(void) = 0;
virtual void tx_dma_half_transfer(void) = 0;
virtual void tx_dma_error(dma_helper::dma_error_type reason) = 0;
public:
void usart_isr();
void rx_dma_isr();
void tx_dma_isr();
};
} /* namespace f4ll */

View file

@ -1,133 +0,0 @@
/*
* ll_consolehandler.cpp
*
* Created on: Nov 7, 2019
* Author: abody
*/
#include <f4ll/console_handler.h>
#include <f4ll/str_util.h>
#include <cstring>
namespace f4ll {
console_handler::console_handler(
USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx, uint8_t *rx_buffer, size_type rx_buffer_size,
uint8_t *tx_buffer, size_type tx_buffer_size, iconsole_input *rx_callback)
: usart_core(usart, dma, stream_rx, stream_tx),
m_tx_buffer(tx_buffer, tx_buffer_size),
m_rx_buffer(rx_buffer, rx_buffer_size),
m_rx_callback(rx_callback)
{
LL_USART_EnableIT_IDLE(usart);
LL_USART_EnableIT_ERROR(usart);
setup_receive();
}
void console_handler::setup_receive(void)
{
uint8_t *bptr = m_rx_buffer.get_free_chunk(m_bytes_requested);
m_reqd_bytes_registered = 0;
usart_core::setup_receive(bptr, m_bytes_requested);
}
void console_handler::receiver_idle(void)
{
uint16_t rcvd_bytes = m_bytes_requested - m_reqd_bytes_registered - LL_DMA_GetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream());
if (rcvd_bytes) {
m_reqd_bytes_registered += rcvd_bytes;
m_rx_buffer.produced(rcvd_bytes);
m_rx_buffer.commit();
if (m_rx_callback) {
m_rx_callback->input_available(rcvd_bytes);
}
}
}
void console_handler::framing_error(void) {}
void console_handler::overrun(void) {}
void console_handler::rx_dma_transfer_complete(void)
{
LL_DMA_DisableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
uint16_t rcvd_bytes = m_bytes_requested - m_reqd_bytes_registered - LL_DMA_GetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream());
if (rcvd_bytes) {
m_rx_buffer.produced(rcvd_bytes);
setup_receive();
m_rx_buffer.commit();
if (m_rx_callback) {
m_rx_callback->input_available(rcvd_bytes);
}
}
}
void console_handler::rx_dma_half_transfer(void) {}
void console_handler::rx_dma_error(dma_helper::dma_error_type reason)
{
(void)reason;
}
void console_handler::tx_dma_transfer_complete(void)
{
LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
}
void console_handler::transmission_complete(void)
{
m_tx_buffer.consumed(m_bytes_sent);
if (m_tx_buffer.commited()) {
uint8_t const *chunk;
m_tx_buffer.get_chunk(chunk, m_bytes_sent);
if (m_bytes_sent) {
setup_transmit(chunk, m_bytes_sent);
}
} else {
m_bytes_sent = 0;
}
}
void console_handler::tx_dma_half_transfer(void) {}
void console_handler::tx_dma_error(dma_helper::dma_error_type reason)
{
(void)reason;
}
console_handler::size_type console_handler::append(char const *s)
{
size_t len = strlen(s);
if (!len) {
return 0;
}
return len - m_tx_buffer.put(reinterpret_cast<uint8_t const *>(s), len);
}
void console_handler::flush()
{
if (!m_tx_buffer.uncommited()) {
return;
}
m_tx_buffer.commit();
if (m_bytes_sent) {
return;
}
uint8_t const *chunk;
m_tx_buffer.get_chunk(chunk, m_bytes_sent);
if (m_bytes_sent) {
setup_transmit(chunk, m_bytes_sent);
}
}
void console_handler::print(char const *s)
{
append(s);
flush();
}
} /* namespace f4ll */

View file

@ -1,161 +0,0 @@
/*
* ll_crc_handler.cpp
*
* Created on: Oct 26, 2019
* Author: compi
*/
#include <f4ll/crc_handler.h>
namespace f4ll {
crc_handler::crc_handler(DMA_TypeDef *dma, uint32_t stream)
: m_dma(dma, stream)
{
LL_DMA_EnableIT_TC(dma, stream);
LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR);
}
void crc_handler::attach_slot(slot_base &slot)
{
for (unsigned int i = 0; i < slot.m_task_count; ++i) {
auto &task(slot[i]);
task.m_address = nullptr;
task.m_word_count = 0;
task.m_callback = nullptr;
task.m_callback_param = 0;
}
uint32_t prim = __get_PRIMASK();
__disable_irq();
slot.m_next = m_first_slot;
m_first_slot = &slot;
__set_PRIMASK(prim);
}
bool crc_handler::enqueue(slot_base &slot, uint8_t task, void const *address, uint16_t len, icallback *cb, uintptr_t cb_param)
{
uint32_t prim = __get_PRIMASK();
bool immediate;
// TODO: do we need sanity check here? (is slot attached, is task in range,
// etc...?)
while (is_active(slot, task))
;
__disable_irq();
immediate = m_active_slot == nullptr;
slot[task].m_address = (!immediate) ? address : nullptr;
slot[task].m_word_count = (len + 3) / 4;
slot[task].m_callback = cb;
slot[task].m_callback_param = cb_param;
if (immediate) {
m_active_slot = &slot;
m_active_task = task;
}
__set_PRIMASK(prim);
if (immediate) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.get_dma(), m_dma.get_stream(), (uint32_t)address);
LL_DMA_SetDataLength(m_dma.get_dma(), m_dma.get_stream(), (len + 3) / 4);
LL_DMA_EnableStream(m_dma.get_dma(), m_dma.get_stream());
}
return immediate;
}
bool crc_handler::is_active(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_word_count != 0;
}
bool crc_handler::is_queued(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_address != nullptr;
}
bool crc_handler::is_running(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_word_count && !slot[task].m_address;
}
void crc_handler::dma_transfer_completed(void)
{
if (*m_dma.get_is_reg() & m_dma.get_tc_mask()) { // DMA transfer complete
*m_dma.get_ifc_reg() = m_dma.get_tc_mask();
LL_DMA_DisableStream(m_dma.get_dma(), m_dma.get_stream());
if (m_active_slot) {
if ((*m_active_slot)[m_active_task].m_callback) {
(*m_active_slot)[m_active_task].m_callback->crc_succeeded(
(*m_active_slot)[m_active_task].m_callback_param, CRC->DR, m_active_task);
} else if ((*m_active_slot)[m_active_task].m_callback_param) {
*reinterpret_cast<uint32_t *>((*m_active_slot)[m_active_task].m_callback_param) = CRC->DR;
}
}
} else if (*m_dma.get_is_reg() & m_dma.get_te_mask()) { // DMA transfer error
*m_dma.get_ifc_reg() = m_dma.get_te_mask();
LL_DMA_DisableStream(m_dma.get_dma(), m_dma.get_stream());
if (m_active_slot) {
if ((*m_active_slot)[m_active_task].m_callback) {
(*m_active_slot)[m_active_task].m_callback->crc_failed(
(*m_active_slot)[m_active_task].m_callback_param, CRC->DR, m_active_task);
} else if ((*m_active_slot)[m_active_task].m_callback_param) {
*reinterpret_cast<uint32_t *>((*m_active_slot)[m_active_task].m_callback_param) = -1;
}
}
}
(*m_active_slot)[m_active_task].m_callback = nullptr;
(*m_active_slot)[m_active_task].m_callback_param = 0;
(*m_active_slot)[m_active_task].m_word_count = 0;
start_next_task();
}
void crc_handler::start_next_task(void)
{
bool more_tasks;
uint8_t index = 0;
do {
slot_base volatile *slot = m_first_slot;
more_tasks = false;
while (slot) {
if (index < slot->m_task_count) {
if ((*slot)[index].m_address) {
m_active_slot = slot;
m_active_task = index;
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.get_dma(), m_dma.get_stream(), reinterpret_cast<uint32_t>((*slot)[index].m_address));
LL_DMA_SetDataLength(m_dma.get_dma(), m_dma.get_stream(), (*slot)[index].m_word_count);
LL_DMA_EnableStream(m_dma.get_dma(), m_dma.get_stream());
(*slot)[index].m_address = nullptr; // marking as started
return;
}
if (index + 1 < slot->m_task_count) {
more_tasks = true;
}
}
slot = slot->m_next;
}
++index;
} while (more_tasks);
m_active_slot = nullptr;
}
void crc_handler::wait_results(slot_base &slot, uint8_t task) const
{
while (is_queued(slot, task))
;
while (is_active(slot, task))
;
}
uint32_t crc_handler::compute(slot_base &slot, uint8_t task, void const *address, uint16_t len)
{
uint32_t result;
enqueue(slot, task, address, len, nullptr, reinterpret_cast<uintptr_t>(&result));
while (is_active(slot, task))
;
return result;
}
} // namespace f4ll

View file

@ -1,24 +0,0 @@
/*
q * ll_dmahelper.cpp
*
* Created on: Oct 25, 2019
* Author: abody
*/
#include <f4ll/dma_helper.h>
namespace f4ll {
dma_helper::dma_helper(DMA_TypeDef *dma, uint32_t stream)
: m_dma(dma),
m_stream(stream),
m_is_reg(
(dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LISR : &DMA1->HISR)
: ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LISR : &DMA2->HISR)),
m_ifc_reg(
(dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LIFCR : &DMA1->HIFCR)
: ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LIFCR : &DMA2->HIFCR))
{
}
} /* namespace f4ll */

View file

@ -1,142 +0,0 @@
/*
* fault.c
*
* Created on: Oct 1, 2019
* Author: abody
* -c "tpiu config internal <logfile_full_path> uart off <cpufreq>"
*/
#include <inttypes.h>
#include <f4ll/fault.h>
#include <f4ll/str_util.h>
#include <stm32f4xx.h>
#ifdef __cplusplus
extern "C" {
#endif
fault_context_t g_fault_context;
void __attribute__((weak)) app_fault_callback(uint32_t reason)
{
(void)reason;
}
void swo_send_str(char const *str, uint8_t len, uint8_t port)
{
while (len) {
if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && // ITM enabled
((ITM->TER & (1UL << port)) != 0UL)) // ITM Port enabled
{
// Wait until shift register is free
while (ITM->PORT[port].u32 == 0UL) {
__ASM volatile("nop");
}
if (len >= 4) {
ITM->PORT[port].u32 = *(uint32_t *)(str);
str += 4;
len -= 4;
} else if (len >= 2) {
ITM->PORT[port].u16 = *(uint16_t *)(str);
str += 2;
len -= 2;
} else {
ITM->PORT[port].u8 = *(uint8_t *)(str);
++str;
--len;
}
} else {
break;
}
}
}
void fault_print_str(char const *fmtstr, uint32_t *values)
{
char hex_str[9] = {0};
char const *next_chunk = fmtstr;
while (*fmtstr) {
if (*fmtstr == '%') {
swo_send_str(next_chunk, fmtstr - next_chunk, 0);
uitohex(hex_str, *values++, 8);
swo_send_str(hex_str, 8, 0);
next_chunk = fmtstr + 1;
}
++fmtstr;
}
if (next_chunk != fmtstr) {
swo_send_str(next_chunk, fmtstr - next_chunk, 0);
}
}
void fault_handler(uint32_t type, fault_context_t *context)
{
uint32_t FSR[9] = {
SCB->HFSR, 0xff & SCB->CFSR, (0xff00 & SCB->CFSR) >> 8, (0xffff0000 & SCB->CFSR) >> 16, SCB->DFSR, SCB->AFSR, SCB->SHCSR,
SCB->MMFAR, SCB->BFAR};
while (1) {
fault_print_str("\n++ Fault Handler ++\n\nFaultType: ", NULL);
switch (type) {
case FAULT_REASON_HARD_FAULT:
fault_print_str("HardFault", NULL);
break;
case FAULT_REASON_MEMMANAGE_FAULT:
fault_print_str("MemManageFault", NULL);
break;
case FAULT_REASON_BUS_FAULT:
fault_print_str("BusFault", NULL);
break;
case FAULT_REASON_USAGE_FAULT:
fault_print_str("UsageFault", NULL);
break;
default:
fault_print_str("Unknown Fault", NULL);
break;
}
fault_print_str("\n\nContext:", NULL);
fault_print_str(
"\nR0 : %"
"\nR1 : %"
"\nR2 : %"
"\nR3 : %"
"\nR4 : %"
"\nR5 : %"
"\nR6 : %"
"\nR7 : %"
"\nR8 : %"
"\nR9 : %"
"\nR10 : %"
"\nR11 : %"
"\nR12 : %"
"\nSP : %"
"\nLR : %"
"\nPC : %"
"\nxPSR : %"
"\nPSP : %"
"\nMSP : %",
(uint32_t *)context);
// Capture CPUID to get core/cpu info
fault_print_str("\nCPUID: %", (uint32_t *)&SCB->CPUID);
fault_print_str(
"\nHFSR : %"
"\nMMFSR: %"
"\nBFSR : %"
"\nUFSR : %"
"\nDFSR : %"
"\nAFSR : %"
"\nSHCSR: %",
FSR);
app_fault_callback(type);
}
}
#ifdef __cplusplus
}
#endif

View file

@ -1,38 +0,0 @@
/*
* llmemcpydma.cpp
*
* Created on: Nov 4, 2019
* Author: abody
*/
#include <f4ll/memcpy_dma.h>
namespace f4ll {
memcpy_dma::memcpy_dma(DMA_TypeDef *dma, uint32_t stream)
: dma_helper(dma, stream)
{
LL_DMA_EnableIT_TC(dma, stream);
}
void *memcpy_dma::copy(void *dst, void const *src, uint16_t length)
{
LL_DMA_SetM2MSrcAddress(get_dma(), get_stream(), (uint32_t)src);
LL_DMA_SetM2MDstAddress(get_dma(), get_stream(), (uint32_t)dst);
LL_DMA_SetDataLength(get_dma(), get_stream(), (length + 3) / 4);
m_busy = 1;
LL_DMA_EnableStream(get_dma(), get_stream());
while (m_busy)
;
return dst;
}
void memcpy_dma::dma_transfer_completed()
{
if (*get_is_reg() & get_tc_mask()) { // DMA transfer complete
*get_ifc_reg() = get_tc_mask();
LL_DMA_DisableStream(get_dma(), get_stream());
m_busy = 0;
}
}
} /* namespace f4ll */

View file

@ -1,213 +0,0 @@
/*
* ll_hsusart_impl.h
*
* Created on: Oct 29, 2019
* Author: abody
*/
#include <f4ll/packet_usart.h>
#include <cstring>
namespace f4ll {
template <typename T> static inline T round_up_to_4(T input)
{
return (input + 3) & (((T)-1) - 3);
}
packet_usart::packet_usart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx)
: usart_core(usart, dma, stream_rx, stream_tx)
{
crc_handler::instance().attach_slot(m_crc_slot);
LL_USART_EnableIT_IDLE(usart);
LL_USART_EnableIT_ERROR(usart);
}
void packet_usart::rx_processed(bool second)
{
m_rx_buffers[second].busy = false;
m_rx_buffers[second].error = false;
}
void packet_usart::set_callback(ihs_usart_callback *callback, uintptr_t callback_param)
{
m_user_callback = callback;
m_user_callback_param = callback_param;
}
void packet_usart::post_packet(uint8_t const *payload, uint8_t length, bool wait_for_crc_queue)
{
uint16_t payload_length = round_up_to_4((uint16_t)length);
build_header(m_tx_buffer.pkt, m_tx_serial_nr++, length);
if (payload) {
memcpy(m_tx_buffer.pkt.payload, payload, length);
}
m_tx_buffer.requested_length = sizeof(m_tx_buffer.pkt.header) + payload_length + sizeof(uint32_t);
m_tx_buffer.busy = true;
m_tx_buffer.error = false;
crc_handler::instance().enqueue(
m_crc_slot, 0, &m_tx_buffer.pkt, sizeof(packet_header) + payload_length, nullptr,
reinterpret_cast<uintptr_t>(m_tx_buffer.pkt.payload + payload_length));
while (wait_for_crc_queue && crc_handler::instance().is_queued(m_crc_slot, 0))
;
setup_transmit(&m_tx_buffer.pkt, m_tx_buffer.requested_length);
++m_stats.sent;
}
void packet_usart::setup_receive()
{
m_rx_buffers[m_rx_buffer_selector].requested_length = sizeof(m_rx_buffers[m_rx_buffer_selector].pkt);
usart_core::setup_receive(&m_rx_buffers[m_rx_buffer_selector], sizeof(m_rx_buffers[m_rx_buffer_selector].pkt));
}
//////////////////////////////////////
// UsartCore pure virtual functions //
//////////////////////////////////////
void packet_usart::receiver_idle(void)
{
uint16_t rcvdLen =
m_rx_buffers[m_rx_buffer_selector].requested_length - LL_DMA_GetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream());
if (rcvdLen >= sizeof(packet_header)) {
if (check_header(m_rx_buffers[m_rx_buffer_selector].pkt.header)) {
if (rcvdLen >= sizeof(packet_header) + round_up_to_4((uint16_t)m_rx_buffers[m_rx_buffer_selector].pkt.header.payload_length) +
sizeof(uint32_t)) {
LL_DMA_DisableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
} else {
++m_stats.premature_payload;
}
} else {
m_rx_buffers[m_rx_buffer_selector].error = 1;
LL_DMA_DisableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
}
} else {
++m_stats.premature_hdr;
}
}
void packet_usart::transmission_complete(void)
{
LL_USART_DisableDirectionTx(m_usart); // enforcing an idle frame
LL_USART_EnableDirectionTx(m_usart);
m_tx_buffer.busy = 0;
}
void packet_usart::framing_error(void) {}
void packet_usart::overrun(void) {}
void packet_usart::rx_dma_transfer_complete(void)
{
if (check_header(m_rx_buffers[m_rx_buffer_selector].pkt.header)) {
crc_handler::instance().enqueue(
m_crc_slot, 1, &m_rx_buffers[m_rx_buffer_selector].pkt,
sizeof(packet_header) + round_up_to_4((uint16_t)m_rx_buffers[m_rx_buffer_selector].pkt.header.payload_length), this,
m_rx_buffer_selector);
} else {
++m_stats.hdr_error;
m_rx_buffers[m_rx_buffer_selector].error = true;
}
switch_rx_buffers();
}
void packet_usart::rx_dma_half_transfer(void) {}
void packet_usart::rx_dma_error(dma_helper::dma_error_type reason)
{
(void)reason;
m_rx_buffers[m_rx_buffer_selector].error = 1;
++m_stats.rx_dma_error;
switch_rx_buffers();
}
void packet_usart::tx_dma_transfer_complete(void)
{
LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
}
void packet_usart::tx_dma_half_transfer(void) {}
void packet_usart::tx_dma_error(dma_helper::dma_error_type reason)
{
(void)reason;
m_tx_buffer.error = 1;
++m_stats.tx_dma_error;
}
///////////////////////
// Private functions //
///////////////////////
void packet_usart::build_header(packet &packet, uint8_t serial_nr, uint8_t length)
{
uint8_t hash = STARTMARKER;
packet.header.start_byte = STARTMARKER;
packet.header.serial = serial_nr;
hash ^= serial_nr;
packet.header.payload_length = length;
hash ^= length;
packet.header.hash = hash;
}
bool packet_usart::check_header(packet_header &header)
{
return header.start_byte == STARTMARKER && (header.start_byte ^ header.serial ^ header.payload_length) == header.hash;
}
void packet_usart::switch_rx_buffers(void)
{
++m_stats.rcvd;
m_rx_buffer_selector = !m_rx_buffer_selector;
if (m_rx_buffers[m_rx_buffer_selector].busy) {
++m_stats.overrun;
}
setup_receive();
}
///////////////////////////
// crc_handler::ICallback //
///////////////////////////
void packet_usart::crc_succeeded(uintptr_t callback_param, uint32_t crc, uint8_t task)
{
(void)task;
Buffer &buf(m_rx_buffers[static_cast<int>(callback_param)]);
buf.busy = 1;
if (*(uint32_t *)(buf.pkt.payload + round_up_to_4((uint16_t)buf.pkt.header.payload_length)) != crc) {
buf.error = 1;
buf.error_info = crc;
++m_stats.payload_errror;
}
if (m_user_callback) {
buf.busy = !m_user_callback->packet_received(this, m_user_callback_param, buf.pkt);
}
}
void packet_usart::crc_failed(uintptr_t callback_param, uint32_t crc, uint8_t task)
{
(void)crc;
(void)task;
Buffer &buf(m_rx_buffers[static_cast<int>(callback_param)]);
buf.busy = buf.error = true;
buf.error_info = 0;
++m_stats.payload_errror;
if (m_user_callback) {
buf.busy = !m_user_callback->packet_received(this, m_user_callback_param, buf.pkt);
}
}
} // namespace f4ll

View file

@ -1,152 +0,0 @@
#include <f4ll/ringbuffer.h>
#include <cstring>
namespace f4ll {
ringbuffer_ext::ringbuffer_ext(uint8_t *bptr, size_type bsize)
: m_buffer(bptr),
m_bsize(bsize)
{
}
iringbuffer::size_type ringbuffer_ext::put(uint8_t const *data, size_type len)
{
size_type chunk1 = 0;
size_type chunk2 = 0;
if (!data || !len) {
return 0;
}
size_type max_len = unused();
len = len < max_len ? len : max_len;
chunk1 = m_bsize - m_head_shadow;
if (chunk1 >= len) {
chunk1 = len;
} else {
chunk2 = len - chunk1;
}
std::memcpy(m_buffer + m_head_shadow, data, chunk1);
m_head_shadow += chunk1;
if (m_head_shadow == m_bsize) {
m_head_shadow = 0;
}
if (chunk2) {
std::memcpy(m_buffer, data + chunk1, chunk2);
m_head_shadow += chunk2;
if (m_head_shadow == m_bsize) {
m_head_shadow = 0;
}
}
return len;
}
void ringbuffer_ext::commit()
{
m_head = m_head_shadow;
}
bool ringbuffer_ext::get_chunk(uint8_t const *&data, size_type &len) const
{
size_type head = m_head;
size_type tail = m_tail;
size_type chunk_size = head >= tail ? head - tail : m_bsize - tail;
if (!chunk_size) {
len = 0;
return tail != head;
}
data = m_buffer + tail;
len = chunk_size;
tail += chunk_size;
if (tail == m_bsize) {
tail = 0;
}
return tail != head;
}
void ringbuffer_ext::consumed(size_type len)
{
if (!len) {
return;
}
m_tail += len;
if (m_tail == m_bsize) {
m_tail = 0;
}
}
iringbuffer::size_type ringbuffer_ext::max_chunk_len() const
{
if (m_tail <= m_head_shadow) {
return m_bsize - m_head_shadow - (m_tail ? 0 : 1);
} else {
return m_tail - m_head_shadow - 1;
}
}
uint8_t *ringbuffer_ext::get_free_chunk(size_type &len)
{
len = max_chunk_len();
return m_buffer + m_head_shadow;
}
bool ringbuffer_ext::produced(size_type len)
{
size_type max_len = max_chunk_len();
if (len > max_len) {
return false;
}
m_head_shadow += len;
if (m_head_shadow == m_bsize) {
m_head_shadow = 0;
}
return true;
}
iringbuffer::size_type ringbuffer_ext::uncommited() const
{
return marker_diff(m_head_shadow, m_head);
}
iringbuffer::size_type ringbuffer_ext::commited() const
{
return marker_diff(m_head, m_tail);
}
void ringbuffer_ext::discard()
{
m_head_shadow = m_head;
}
iringbuffer::size_type ringbuffer_ext::size() const
{
return m_bsize;
}
iringbuffer::size_type ringbuffer_ext::used() const
{
return marker_diff(m_head_shadow, m_tail);
}
iringbuffer::size_type ringbuffer_ext::unused() const
{
return m_bsize - used() - 1;
}
iringbuffer::size_type ringbuffer_ext::marker_diff(size_type m1, size_type m2) const
{
return (m1 >= m2) ? (m1 - m2) : (m_bsize - m2 + m1);
}
//
}

View file

@ -1,104 +0,0 @@
#include <f4ll/str_util.h>
//////////////////////////////////////////////////////////////////////////////
size_t strcpy_ex(char *dst, char const *src)
{
size_t ret = 0;
do {
*dst++ = *src;
++ret;
} while (*src++);
return ret - 1;
}
//////////////////////////////////////////////////////////////////////////////
void strrev(char *first, char *last)
{
char tmp;
while (last > first) {
tmp = *first;
*first++ = *last;
*last-- = tmp;
}
}
//////////////////////////////////////////////////////////////////////////////
char tochr(const uint8_t in, const uint8_t upper)
{
return in + ((in < 10) ? '0' : (upper ? 'A' : 'a') - 10);
}
//////////////////////////////////////////////////////////////////////////////
size_t uitodec(char *buffer, uint32_t data)
{
char *b2 = buffer;
if (!data) {
*b2++ = '0';
*b2 = '\0';
return 1;
}
while (data) {
*b2++ = (data % 10) + '0';
data /= 10;
}
size_t ret = b2 - buffer;
*b2-- = 0;
strrev(buffer, b2);
return ret;
}
//////////////////////////////////////////////////////////////////////////////
size_t uitohex(char *buffer, uint32_t data, uint8_t chars)
{
char *b2 = buffer;
size_t ret = 0;
if (chars == 0xff || !chars) {
if (!data) {
*b2++ = '0';
*b2 = '\0';
return 1;
}
while (data) {
uint8_t curval = data & 0x0f;
*b2++ = tochr(curval, 1);
data >>= 4;
}
ret = b2 - buffer;
} else {
ret = chars;
for (uint8_t pos = 0; pos < (uint8_t)ret; ++pos) {
*b2++ = tochr(data & 0x0f, 1);
data >>= 4;
}
}
*b2-- = 0;
strrev(buffer, b2);
return ret;
}
//////////////////////////////////////////////////////////////////////////////
size_t itodec(char *buffer, int data)
{
if (data < 0) {
*buffer++ = '-';
return uitodec(buffer, -data) + 1;
}
return uitodec(buffer, data);
}
//////////////////////////////////////////////////////////////////////////////
size_t itohex(char *buffer, int data)
{
if (data < 0) {
*buffer++ = '-';
return uitohex(buffer, -data, 0) + 1;
}
return uitohex(buffer, data, 0);
}

View file

@ -1,145 +0,0 @@
/*
* ll_dmadrivenusartcore.cpp
*
* Created on: Nov 4, 2019
* Author: abody
*/
#include <f4ll/usart_core.h>
namespace f4ll {
usart_core::usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: m_usart(usart),
m_rx_dma(dma, streamRx),
m_tx_dma(dma, streamTx)
{
uint32_t status = usart->SR;
volatile uint32_t tmpreg = usart->DR; // clearing some of the error/status bits in the USART
(void)tmpreg;
(void)status;
*m_tx_dma.get_ifc_reg() =
m_tx_dma.get_tc_mask() | m_rx_dma.get_ht_mask() | m_tx_dma.get_te_mask() | m_rx_dma.get_fe_mask() | m_rx_dma.get_dme_mask();
*m_rx_dma.get_ifc_reg() =
m_rx_dma.get_tc_mask() | m_rx_dma.get_ht_mask() | m_rx_dma.get_te_mask() | m_rx_dma.get_fe_mask() | m_rx_dma.get_dme_mask();
LL_DMA_EnableIT_TC(dma, streamRx);
LL_DMA_EnableIT_TE(dma, streamRx);
LL_DMA_EnableIT_TC(dma, streamTx);
LL_DMA_EnableIT_TE(dma, streamTx);
}
void usart_core::usart_isr()
{
uint32_t status = m_usart->SR;
volatile uint32_t tmpreg = m_usart->DR; // clearing some of the error/status bits in the HW
(void)tmpreg;
if (LL_USART_IsEnabledIT_TC(m_usart) && LL_USART_IsActiveFlag_TC(m_usart)) { // transmission complete
LL_USART_DisableIT_TC(m_usart);
transmission_complete();
}
if (LL_USART_IsEnabledIT_IDLE(m_usart) && (status & USART_SR_IDLE)) {
receiver_idle();
}
if (LL_USART_IsEnabledIT_ERROR(m_usart)) {
if (status & USART_SR_FE) {
framing_error();
}
if (status & USART_SR_ORE) {
overrun();
}
}
}
void usart_core::rx_dma_isr()
{
if (*m_rx_dma.get_is_reg() & m_rx_dma.get_tc_mask()) {
*m_rx_dma.get_ifc_reg() = m_rx_dma.get_tc_mask();
if (m_rx_dma.is_enabled_it_tc()) {
rx_dma_transfer_complete();
}
}
if (*m_rx_dma.get_is_reg() & m_rx_dma.get_ht_mask()) {
*m_rx_dma.get_ifc_reg() = m_rx_dma.get_ht_mask();
if (m_rx_dma.is_enabled_it_ht()) {
rx_dma_half_transfer();
}
}
if (*m_rx_dma.get_is_reg() & m_rx_dma.get_te_mask()) {
*m_rx_dma.get_ifc_reg() = m_rx_dma.get_te_mask();
if (m_rx_dma.is_enabled_it_te()) {
rx_dma_error(dma_helper::dma_error_type::transfer);
}
}
if (*m_rx_dma.get_is_reg() & m_rx_dma.get_fe_mask()) {
*m_rx_dma.get_ifc_reg() = m_rx_dma.get_fe_mask();
if (m_rx_dma.is_enabled_it_fe()) {
rx_dma_error(dma_helper::dma_error_type::fifo);
}
}
if (*m_rx_dma.get_is_reg() & m_rx_dma.get_dme_mask()) {
*m_rx_dma.get_ifc_reg() = m_rx_dma.get_dme_mask();
if (m_rx_dma.is_enabled_it_dme()) {
rx_dma_error(dma_helper::dma_error_type::direct_mode);
}
}
}
void usart_core::tx_dma_isr()
{
if (*m_tx_dma.get_is_reg() & m_tx_dma.get_tc_mask()) { // DMA transfer complete
*m_tx_dma.get_ifc_reg() = m_tx_dma.get_tc_mask();
if (m_tx_dma.is_enabled_it_tc()) {
tx_dma_transfer_complete();
}
}
if (*m_tx_dma.get_is_reg() & m_tx_dma.get_ht_mask()) {
*m_tx_dma.get_ifc_reg() = m_tx_dma.get_ht_mask();
if (m_tx_dma.is_enabled_it_ht()) {
tx_dma_half_transfer();
}
}
if (*m_tx_dma.get_is_reg() & m_tx_dma.get_te_mask()) {
*m_tx_dma.get_ifc_reg() = m_tx_dma.get_te_mask();
if (m_tx_dma.is_enabled_it_te()) {
tx_dma_error(dma_helper::dma_error_type::transfer);
}
}
if (*m_tx_dma.get_is_reg() & m_tx_dma.get_fe_mask()) {
*m_tx_dma.get_ifc_reg() = m_tx_dma.get_fe_mask();
if (m_tx_dma.is_enabled_it_fe()) {
tx_dma_error(dma_helper::dma_error_type::fifo);
}
}
if (*m_tx_dma.get_is_reg() & m_tx_dma.get_dme_mask()) {
*m_tx_dma.get_ifc_reg() = m_tx_dma.get_dme_mask();
if (m_tx_dma.is_enabled_it_dme()) {
tx_dma_error(dma_helper::dma_error_type::direct_mode);
}
}
}
void usart_core::setup_transmit(void const *buffer, uint16_t length)
{
LL_DMA_ConfigAddresses(
m_tx_dma.get_dma(), m_tx_dma.get_stream(), reinterpret_cast<uint32_t>(buffer), LL_USART_DMA_GetRegAddr(m_usart),
LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetDataLength(m_tx_dma.get_dma(), m_tx_dma.get_stream(), length);
LL_USART_EnableDMAReq_TX(m_usart);
LL_DMA_EnableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
}
void usart_core::setup_receive(void *buffer, uint16_t length)
{
LL_DMA_ConfigAddresses(
m_rx_dma.get_dma(), m_rx_dma.get_stream(), LL_USART_DMA_GetRegAddr(m_usart), reinterpret_cast<uint32_t>(buffer),
LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream(), length);
LL_USART_EnableDMAReq_RX(m_usart);
LL_USART_ClearFlag_ORE(m_usart);
LL_DMA_EnableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
}
} /* namespace f4ll */