Initial commit

This commit is contained in:
Attila Body 2025-06-09 18:06:36 +02:00
commit ce3dd83b9f
Signed by: abody
GPG key ID: BD0C6214E68FB5CF
1470 changed files with 1054449 additions and 0 deletions

View file

@ -0,0 +1,41 @@
cmake_minimum_required (VERSION 3.14)
project(CMSISDSPSVM)
include(configLib)
include(configDsp)
add_library(CMSISDSPSVM STATIC)
target_sources(CMSISDSPSVM PRIVATE arm_svm_linear_init_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_rbf_init_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_linear_predict_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_rbf_predict_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_polynomial_init_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_sigmoid_init_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_polynomial_predict_f32.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_sigmoid_predict_f32.c)
configLib(CMSISDSPSVM ${ROOT})
configDsp(CMSISDSPSVM ${ROOT})
### Includes
target_include_directories(CMSISDSPSVM PUBLIC "${DSP}/Include")
if ((NOT ARMAC5) AND (NOT DISABLEFLOAT16))
target_sources(CMSISDSPSVM PRIVATE arm_svm_linear_init_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_rbf_init_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_linear_predict_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_rbf_predict_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_polynomial_init_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_sigmoid_init_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_polynomial_predict_f16.c)
target_sources(CMSISDSPSVM PRIVATE arm_svm_sigmoid_predict_f16.c)
endif()

View file

@ -0,0 +1,36 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: BayesFunctions.c
* Description: Combination of all SVM function source files.
*
* $Date: 16. March 2020
* $Revision: V1.0.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_svm_linear_init_f32.c"
#include "arm_svm_linear_predict_f32.c"
#include "arm_svm_polynomial_init_f32.c"
#include "arm_svm_polynomial_predict_f32.c"
#include "arm_svm_rbf_init_f32.c"
#include "arm_svm_rbf_predict_f32.c"
#include "arm_svm_sigmoid_init_f32.c"
#include "arm_svm_sigmoid_predict_f32.c"

View file

@ -0,0 +1,36 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: BayesFunctions.c
* Description: Combination of all SVM function source files.
*
* $Date: 16. March 2020
* $Revision: V1.0.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_svm_linear_init_f16.c"
#include "arm_svm_linear_predict_f16.c"
#include "arm_svm_polynomial_init_f16.c"
#include "arm_svm_polynomial_predict_f16.c"
#include "arm_svm_rbf_init_f16.c"
#include "arm_svm_rbf_predict_f16.c"
#include "arm_svm_sigmoid_init_f16.c"
#include "arm_svm_sigmoid_predict_f16.c"

View file

@ -0,0 +1,98 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_linear_init_f16.c
* Description: SVM Linear Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @defgroup groupSVM SVM Functions
*
*/
/**
@ingroup groupSVM
*/
/**
@defgroup linearsvm Linear SVM
Linear SVM classifier
*/
/**
* @addtogroup linearsvm
* @{
*/
/**
* @brief SVM linear instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S Parameters for the SVM function
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @return none.
*
*/
void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float16_t intercept,
const float16_t *dualCoefficients,
const float16_t *supportVectors,
const int32_t *classes)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
}
/**
* @} end of linearsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,92 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_linear_init_f32.c
* Description: SVM Linear Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
* @defgroup groupSVM SVM Functions
*
*/
/**
@ingroup groupSVM
*/
/**
@defgroup linearsvm Linear SVM
Linear SVM classifier
*/
/**
* @addtogroup linearsvm
* @{
*/
/**
* @brief SVM linear instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S Parameters for the SVM function
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @return none.
*
*/
void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float32_t intercept,
const float32_t *dualCoefficients,
const float32_t *supportVectors,
const int32_t *classes)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
}
/**
* @} end of linearsvm group
*/

View file

@ -0,0 +1,314 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_linear_predict_f16.c
* Description: SVM Linear Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup linearsvm
* @{
*/
/**
* @brief SVM linear prediction
* @param[in] S Pointer to an instance of the linear SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
void arm_svm_linear_predict_f16(
const arm_svm_linear_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float16_t *pSupport = S->supportVectors;
const float16_t *pSrcA = pSupport;
const float16_t *pInA0;
const float16_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float16_t *pDualCoef = S->dualCoefficients;
_Float16 sum = S->intercept;
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4)
{
const float16_t *pInA2, *pInA3;
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f16x8_t vecIn, acc0, acc1, acc2, acc3;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
acc2 = vdupq_n_f16(0.0f);
acc3 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 8;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 8;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f16(acc0,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc1,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc2,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc3,*pDualCoef++);
sum += (_Float16)vecAddAcrossF16Mve(acc0);
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parallel
*/
if (row >= 2) {
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f16x8_t vecIn, acc0, acc1;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f16(acc0,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc1,*pDualCoef++);
sum += (_Float16)vecAddAcrossF16Mve(acc0);
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f16x8_t vecIn, acc0;
float16_t const *pSrcA0Vec, *pInVec;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
sum += (_Float16)*pDualCoef++ * (_Float16)vecAddAcrossF16Mve(acc0);
}
*pResult = S->classes[STEP(sum)];
}
#else
void arm_svm_linear_predict_f16(
const arm_svm_linear_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
_Float16 sum=S->intercept;
_Float16 dot=0;
uint32_t i,j;
const float16_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = (_Float16)dot + (_Float16)in[j]* (_Float16)*pSupport++;
}
sum += (_Float16)S->dualCoefficients[i] * (_Float16)dot;
}
*pResult=S->classes[STEP(sum)];
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of linearsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,461 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_linear_predict_f32.c
* Description: SVM Linear Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
* @addtogroup linearsvm
* @{
*/
/**
* @brief SVM linear prediction
* @param[in] S Pointer to an instance of the linear SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
void arm_svm_linear_predict_f32(
const arm_svm_linear_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSrcA = pSupport;
const float32_t *pInA0;
const float32_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float32_t *pDualCoef = S->dualCoefficients;
float32_t sum = S->intercept;
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4)
{
const float32_t *pInA2, *pInA3;
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f32x4_t vecIn, acc0, acc1, acc2, acc3;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
acc2 = vdupq_n_f32(0.0f);
acc3 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 4;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 4;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f32(acc0,*pDualCoef++);
acc0 = vfmaq_n_f32(acc0,acc1,*pDualCoef++);
acc0 = vfmaq_n_f32(acc0,acc2,*pDualCoef++);
acc0 = vfmaq_n_f32(acc0,acc3,*pDualCoef++);
sum += vecAddAcrossF32Mve(acc0);
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parallel
*/
if (row >= 2) {
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f32x4_t vecIn, acc0, acc1;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f32(acc0,*pDualCoef++);
acc0 = vfmaq_n_f32(acc0,acc1,*pDualCoef++);
sum += vecAddAcrossF32Mve(acc0);
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f32x4_t vecIn, acc0;
float32_t const *pSrcA0Vec, *pInVec;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
sum += *pDualCoef++ * vecAddAcrossF32Mve(acc0);
}
*pResult = S->classes[STEP(sum)];
}
#else
#if defined(ARM_MATH_NEON)
void arm_svm_linear_predict_f32(
const arm_svm_linear_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t vec1;
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
accuma = vmlaq_f32(accuma, vec1,vec2a);
accumb = vmlaq_f32(accumb, vec1,vec2b);
accumc = vmlaq_f32(accumc, vec1,vec2c);
accumd = vmlaq_f32(accumd, vec1,vec2d);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0);
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1);
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2);
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + *pIn * *pSupporta++, dotV,0);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + *pIn * *pSupportb++, dotV,1);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + *pIn * *pSupportc++, dotV,2);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + *pIn * *pSupportd++, dotV,3);
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0f;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
accum = vmlaq_f32(accum, vec1,vec2);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + *pIn++ * *pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * dot;
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_linear_predict_f32(
const arm_svm_linear_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
uint32_t i,j;
const float32_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + in[j]* *pSupport++;
}
sum += S->dualCoefficients[i] * dot;
}
*pResult=S->classes[STEP(sum)];
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of linearsvm group
*/

View file

@ -0,0 +1,103 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_init_f16.c
* Description: SVM Polynomial Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup polysvm Polynomial SVM
Polynomial SVM classifier
*/
/**
* @addtogroup polysvm
* @{
*/
/**
* @brief SVM polynomial instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the polynomial SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] degree Polynomial degree
* @param[in] coef0 coeff0 (scikit-learn terminology)
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float16_t intercept,
const float16_t *dualCoefficients,
const float16_t *supportVectors,
const int32_t *classes,
int32_t degree,
float16_t coef0,
float16_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->degree = degree;
S->coef0 = coef0;
S->gamma = gamma;
}
/**
* @} end of polysvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,97 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_init_f32.c
* Description: SVM Polynomial Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup polysvm Polynomial SVM
Polynomial SVM classifier
*/
/**
* @addtogroup polysvm
* @{
*/
/**
* @brief SVM polynomial instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the polynomial SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] degree Polynomial degree
* @param[in] coef0 coeff0 (scikit-learn terminology)
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float32_t intercept,
const float32_t *dualCoefficients,
const float32_t *supportVectors,
const int32_t *classes,
int32_t degree,
float32_t coef0,
float32_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->degree = degree;
S->coef0 = coef0;
S->gamma = gamma;
}
/**
* @} end of polysvm group
*/

View file

@ -0,0 +1,369 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_predict_f16.c
* Description: SVM Polynomial Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
#if !defined(ARM_MATH_MVE_FLOAT16) || defined(ARM_MATH_AUTOVECTORIZE)
/*
_Float16 is not supported in g++ so we avoid putting _Float16 definitions
in the public headers.
This function should at some point be moved in FastMath.
*/
__STATIC_INLINE float16_t arm_exponent_f16(float16_t x, int32_t nb)
{
float16_t r = x;
nb --;
while(nb > 0)
{
r = (_Float16)r * (_Float16)x;
nb--;
}
return(r);
}
#endif
/**
* @addtogroup polysvm
* @{
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math_f16.h"
/**
* @brief SVM polynomial prediction
* @param[in] S Pointer to an instance of the polynomial SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
void arm_svm_polynomial_predict_f16(
const arm_svm_polynomial_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float16_t *pSupport = S->supportVectors;
const float16_t *pSrcA = pSupport;
const float16_t *pInA0;
const float16_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float16_t *pDualCoef = S->dualCoefficients;
_Float16 sum = S->intercept;
f16x8_t vSum = vdupq_n_f16(0.0f);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float16_t *pInA2, *pInA3;
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f16x8_t vecIn, acc0, acc1, acc2, acc3;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
acc2 = vdupq_n_f16(0.0f);
acc3 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 8;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 8;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc3), vtmp, 3);
vSum = vfmaq_m_f16(vSum, vld1q(pDualCoef),
arm_vec_exponent_f16
(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0),
S->degree),vctp16q(4));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f16x8_t vecIn, acc0, acc1;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vSum = vfmaq_m_f16(vSum, vld1q(pDualCoef),
arm_vec_exponent_f16
(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0), S->degree),
vctp16q(2));
pDualCoef += 2;
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f16x8_t vecIn, acc0;
float16_t const *pSrcA0Vec, *pInVec;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vSum = vfmaq_m_f16(vSum, vld1q(pDualCoef),
arm_vec_exponent_f16
(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0), S->degree),
vctp16q(1));
}
sum += (_Float16)vecAddAcrossF16Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
/**
* @brief SVM polynomial prediction
* @param[in] S Pointer to an instance of the polynomial SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
void arm_svm_polynomial_predict_f16(
const arm_svm_polynomial_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
_Float16 sum=S->intercept;
_Float16 dot=0;
uint32_t i,j;
const float16_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = (_Float16)dot + (_Float16)in[j]* (_Float16)*pSupport++;
}
sum += (_Float16)S->dualCoefficients[i] * (_Float16)arm_exponent_f16((_Float16)S->gamma * (_Float16)dot + (_Float16)S->coef0, S->degree);
}
*pResult=S->classes[STEP(sum)];
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of polysvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,490 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_predict_f32.c
* Description: SVM Polynomial Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_vec_math.h"
#endif
/**
* @addtogroup polysvm
* @{
*/
/**
* @brief SVM polynomial prediction
* @param[in] S Pointer to an instance of the polynomial SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math.h"
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSrcA = pSupport;
const float32_t *pInA0;
const float32_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float32_t *pDualCoef = S->dualCoefficients;
float32_t sum = S->intercept;
f32x4_t vSum = vdupq_n_f32(0.0f);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float32_t *pInA2, *pInA3;
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f32x4_t vecIn, acc0, acc1, acc2, acc3;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
acc2 = vdupq_n_f32(0.0f);
acc3 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 4;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 4;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc3), vtmp, 3);
vSum = vfmaq_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f32x4_t vecIn, acc0, acc1;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vSum = vfmaq_m_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree),
vctp32q(2));
pDualCoef += 2;
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f32x4_t vecIn, acc0;
float32_t const *pSrcA0Vec, *pInVec;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vSum = vfmaq_m_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree),
vctp32q(1));
}
sum += vecAddAcrossF32Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
#if defined(ARM_MATH_NEON)
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t vec1;
float32x4_t coef0 = vdupq_n_f32(S->coef0);
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
accuma = vmlaq_f32(accuma, vec1,vec2a);
accumb = vmlaq_f32(accumb, vec1,vec2b);
accumc = vmlaq_f32(accumc, vec1,vec2c);
accumd = vmlaq_f32(accumd, vec1,vec2d);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0);
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1);
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2);
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + *pIn * *pSupporta++, dotV,0);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + *pIn * *pSupportb++, dotV,1);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + *pIn * *pSupportc++, dotV,2);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + *pIn * *pSupportd++, dotV,3);
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
// To vectorize later
dotV = vmulq_n_f32(dotV, S->gamma);
dotV = vaddq_f32(dotV, coef0);
dotV = arm_vec_exponent_f32(dotV,S->degree);
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0f;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
accum = vmlaq_f32(accum, vec1,vec2);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + *pIn++ * *pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
uint32_t i,j;
const float32_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + in[j]* *pSupport++;
}
sum += S->dualCoefficients[i] * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
}
*pResult=S->classes[STEP(sum)];
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of polysvm group
*/

View file

@ -0,0 +1,97 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_rbf_init_f16.c
* Description: SVM Radial Basis Function Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup rbfsvm RBF SVM
RBF SVM classifier
*/
/**
* @addtogroup rbfsvm
* @{
*/
/**
* @brief SVM radial basis function instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the polynomial SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float16_t intercept,
const float16_t *dualCoefficients,
const float16_t *supportVectors,
const int32_t *classes,
float16_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->gamma = gamma;
}
/**
* @} end of rbfsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,91 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_rbf_init_f32.c
* Description: SVM Radial Basis Function Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup rbfsvm RBF SVM
RBF SVM classifier
*/
/**
* @addtogroup rbfsvm
* @{
*/
/**
* @brief SVM radial basis function instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the polynomial SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float32_t intercept,
const float32_t *dualCoefficients,
const float32_t *supportVectors,
const int32_t *classes,
float32_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->gamma = gamma;
}
/**
* @} end of rbfsvm group
*/

View file

@ -0,0 +1,352 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_rbf_predict_f16.c
* Description: SVM Radial Basis Function Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup rbfsvm
* @{
*/
/**
* @brief SVM rbf prediction
* @param[in] S Pointer to an instance of the rbf SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math_f16.h"
void arm_svm_rbf_predict_f16(
const arm_svm_rbf_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float16_t *pSupport = S->supportVectors;
const float16_t *pSrcA = pSupport;
const float16_t *pInA0;
const float16_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float16_t *pDualCoef = S->dualCoefficients;
_Float16 sum = S->intercept;
f16x8_t vSum = vdupq_n_f16(0.0f16);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float16_t *pInA2, *pInA3;
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f16x8_t vecIn, acc0, acc1, acc2, acc3;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f16);
acc1 = vdupq_n_f16(0.0f16);
acc2 = vdupq_n_f16(0.0f16);
acc3 = vdupq_n_f16(0.0f16);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
f16x8_t vecDif;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc2 = vfmaq(acc2, vecDif, vecDif);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc3 = vfmaq(acc3, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
f16x8_t vecDif;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
vecA = vldrhq_z_f16(pSrcA2Vec, p0);;
vecDif = vsubq(vecIn, vecA);
acc2 = vfmaq(acc2, vecDif, vecDif);
vecA = vldrhq_z_f16(pSrcA3Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc3 = vfmaq(acc3, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
//sum += *pDualCoef++ * expf(-S->gamma * vecReduceF16Mve(acc0));
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc3), vtmp, 3);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)),vctp16q(4));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f16x8_t vecIn, acc0, acc1;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f16);
acc1 = vdupq_n_f16(0.0f16);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
f16x8_t vecDif;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);;
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA, vecDif;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)), vctp16q(2));
pDualCoef += 2;
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f16x8_t vecIn, acc0;
float16_t const *pSrcA0Vec, *pInVec;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA, vecDif;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA, vecDif;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)), vctp16q(1));
}
sum += (_Float16)vecAddAcrossF16Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
void arm_svm_rbf_predict_f16(
const arm_svm_rbf_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
_Float16 sum=S->intercept;
_Float16 dot=00.f16;
uint32_t i,j;
const float16_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0.0f16;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + SQ((_Float16)in[j] - (_Float16) *pSupport);
pSupport++;
}
sum += (_Float16)S->dualCoefficients[i] * (_Float16)expf((float32_t)(-(_Float16)S->gamma * (_Float16)dot));
}
*pResult=S->classes[STEP(sum)];
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of rbfsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,523 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_rbf_predict_f32.c
* Description: SVM Radial Basis Function Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
* @addtogroup rbfsvm
* @{
*/
/**
* @brief SVM rbf prediction
* @param[in] S Pointer to an instance of the rbf SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math.h"
void arm_svm_rbf_predict_f32(
const arm_svm_rbf_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSrcA = pSupport;
const float32_t *pInA0;
const float32_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float32_t *pDualCoef = S->dualCoefficients;
float32_t sum = S->intercept;
f32x4_t vSum = vdupq_n_f32(0);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float32_t *pInA2, *pInA3;
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f32x4_t vecIn, acc0, acc1, acc2, acc3;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
acc2 = vdupq_n_f32(0.0f);
acc3 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
f32x4_t vecDif;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc2 = vfmaq(acc2, vecDif, vecDif);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc3 = vfmaq(acc3, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
f32x4_t vecDif;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
vecA = vldrwq_z_f32(pSrcA2Vec, p0);;
vecDif = vsubq(vecIn, vecA);
acc2 = vfmaq(acc2, vecDif, vecDif);
vecA = vldrwq_z_f32(pSrcA3Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc3 = vfmaq(acc3, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
//sum += *pDualCoef++ * expf(-S->gamma * vecReduceF32Mve(acc0));
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc3), vtmp, 3);
vSum =
vfmaq_f32(vSum, vld1q(pDualCoef),
vexpq_f32(vmulq_n_f32(vtmp, -S->gamma)));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f32x4_t vecIn, acc0, acc1;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
f32x4_t vecDif;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);;
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA, vecDif;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc1 = vfmaq(acc1, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vSum =
vfmaq_m_f32(vSum, vld1q(pDualCoef),
vexpq_f32(vmulq_n_f32(vtmp, -S->gamma)), vctp32q(2));
pDualCoef += 2;
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f32x4_t vecIn, acc0;
float32_t const *pSrcA0Vec, *pInVec;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA, vecDif;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA, vecDif;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
vecDif = vsubq(vecIn, vecA);
acc0 = vfmaq(acc0, vecDif, vecDif);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vSum =
vfmaq_m_f32(vSum, vld1q(pDualCoef),
vexpq_f32(vmulq_n_f32(vtmp, -S->gamma)), vctp32q(1));
}
sum += vecAddAcrossF32Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
#if defined(ARM_MATH_NEON)
#include "NEMath.h"
void arm_svm_rbf_predict_f32(
const arm_svm_rbf_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t temp;
float32x4_t vec1;
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
temp = vsubq_f32(vec1, vec2a);
accuma = vmlaq_f32(accuma, temp, temp);
temp = vsubq_f32(vec1, vec2b);
accumb = vmlaq_f32(accumb, temp, temp);
temp = vsubq_f32(vec1, vec2c);
accumc = vmlaq_f32(accumc, temp, temp);
temp = vsubq_f32(vec1, vec2d);
accumd = vmlaq_f32(accumd, temp, temp);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0);
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1);
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2);
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + SQ(*pIn - *pSupporta), dotV,0);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + SQ(*pIn - *pSupportb), dotV,1);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + SQ(*pIn - *pSupportc), dotV,2);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + SQ(*pIn - *pSupportd), dotV,3);
pSupporta++;
pSupportb++;
pSupportc++;
pSupportd++;
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
// To vectorize later
dotV = vmulq_n_f32(dotV, -S->gamma);
dotV = vexpq_f32(dotV);
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0f;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
temp = vsubq_f32(vec1,vec2);
accum = vmlaq_f32(accum, temp,temp);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + SQ(*pIn - *pSupport);
pIn++;
pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * expf(-S->gamma * dot);
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_rbf_predict_f32(
const arm_svm_rbf_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
uint32_t i,j;
const float32_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + SQ(in[j] - *pSupport);
pSupport++;
}
sum += S->dualCoefficients[i] * expf(-S->gamma * dot);
}
*pResult=S->classes[STEP(sum)];
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of rbfsvm group
*/

View file

@ -0,0 +1,98 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_sigmoid_predict_f16.c
* Description: SVM Sigmoid Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup sigmoidsvm Sigmoid SVM
Sigmoid SVM classifier
*/
/**
* @addtogroup sigmoidsvm
* @{
*/
/**
* @brief SVM sigmoid instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the rbf SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] coef0 coeff0 (scikit-learn terminology)
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float16_t intercept,
const float16_t *dualCoefficients,
const float16_t *supportVectors,
const int32_t *classes,
float16_t coef0,
float16_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->coef0 = coef0;
S->gamma = gamma;
}
/**
* @} end of sigmoidsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,92 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_sigmoid_predict_f32.c
* Description: SVM Sigmoid Instance Initialization
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
@ingroup groupSVM
*/
/**
@defgroup sigmoidsvm Sigmoid SVM
Sigmoid SVM classifier
*/
/**
* @addtogroup sigmoidsvm
* @{
*/
/**
* @brief SVM sigmoid instance init function
*
* Classes are integer used as output of the function (instead of having -1,1
* as class values).
*
* @param[in] S points to an instance of the rbf SVM structure.
* @param[in] nbOfSupportVectors Number of support vectors
* @param[in] vectorDimension Dimension of vector space
* @param[in] intercept Intercept
* @param[in] dualCoefficients Array of dual coefficients
* @param[in] supportVectors Array of support vectors
* @param[in] classes Array of 2 classes ID
* @param[in] coef0 coeff0 (scikit-learn terminology)
* @param[in] gamma gamma (scikit-learn terminology)
* @return none.
*
*/
void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
uint32_t nbOfSupportVectors,
uint32_t vectorDimension,
float32_t intercept,
const float32_t *dualCoefficients,
const float32_t *supportVectors,
const int32_t *classes,
float32_t coef0,
float32_t gamma
)
{
S->nbOfSupportVectors = nbOfSupportVectors;
S->vectorDimension = vectorDimension;
S->intercept = intercept;
S->dualCoefficients = dualCoefficients;
S->supportVectors = supportVectors;
S->classes = classes;
S->coef0 = coef0;
S->gamma = gamma;
}
/**
* @} end of sigmoidsvm group
*/

View file

@ -0,0 +1,333 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_sigmoid_predict_f16.c
* Description: SVM Sigmoid Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup sigmoidsvm
* @{
*/
/**
* @brief SVM sigmoid prediction
* @param[in] S Pointer to an instance of the rbf SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math_f16.h"
void arm_svm_sigmoid_predict_f16(
const arm_svm_sigmoid_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float16_t *pSupport = S->supportVectors;
const float16_t *pSrcA = pSupport;
const float16_t *pInA0;
const float16_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float16_t *pDualCoef = S->dualCoefficients;
_Float16 sum = S->intercept;
f16x8_t vSum = vdupq_n_f16(0.0f);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float16_t *pInA2, *pInA3;
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f16x8_t vecIn, acc0, acc1, acc2, acc3;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
acc2 = vdupq_n_f16(0.0f);
acc3 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 8;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 8;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc3), vtmp, 3);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vtanhq_f16(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0)),vctp16q(4));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f16x8_t vecIn, acc0, acc1;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vtanhq_f16(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0)),
vctp16q(2));
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f16x8_t vecIn, acc0;
float16_t const *pSrcA0Vec, *pInVec;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f16x8_t vtmp = vuninitializedq_f16();
vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
vSum =
vfmaq_m_f16(vSum, vld1q(pDualCoef),
vtanhq_f16(vaddq_n_f16(vmulq_n_f16(vtmp, S->gamma), S->coef0)),
vctp16q(1));
}
sum += (_Float16)vecAddAcrossF16Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
void arm_svm_sigmoid_predict_f16(
const arm_svm_sigmoid_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
_Float16 sum=S->intercept;
_Float16 dot=0.0f16;
uint32_t i,j;
const float16_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0.0f16;
for(j=0; j < S->vectorDimension; j++)
{
dot = (_Float16)dot + (_Float16)in[j] * (_Float16)*pSupport++;
}
sum += (_Float16)S->dualCoefficients[i] * (_Float16)tanhf((float32_t)((_Float16)S->gamma * (_Float16)dot + (_Float16)S->coef0));
}
*pResult=S->classes[STEP(sum)];
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of sigmoidsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,487 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_sigmoid_predict_f32.c
* Description: SVM Sigmoid Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
/**
* @addtogroup sigmoidsvm
* @{
*/
/**
* @brief SVM sigmoid prediction
* @param[in] S Pointer to an instance of the rbf SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math.h"
void arm_svm_sigmoid_predict_f32(
const arm_svm_sigmoid_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSrcA = pSupport;
const float32_t *pInA0;
const float32_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float32_t *pDualCoef = S->dualCoefficients;
float32_t sum = S->intercept;
f32x4_t vSum = vdupq_n_f32(0.0f);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float32_t *pInA2, *pInA3;
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f32x4_t vecIn, acc0, acc1, acc2, acc3;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
acc2 = vdupq_n_f32(0.0f);
acc3 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 4;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 4;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc3), vtmp, 3);
vSum =
vfmaq_f32(vSum, vld1q(pDualCoef),
vtanhq_f32(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0)));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f32x4_t vecIn, acc0, acc1;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vSum =
vfmaq_m_f32(vSum, vld1q(pDualCoef),
vtanhq_f32(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0)),
vctp32q(2));
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f32x4_t vecIn, acc0;
float32_t const *pSrcA0Vec, *pInVec;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vSum =
vfmaq_m_f32(vSum, vld1q(pDualCoef),
vtanhq_f32(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0)),
vctp32q(1));
}
sum += vecAddAcrossF32Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
#if defined(ARM_MATH_NEON)
#include "NEMath.h"
void arm_svm_sigmoid_predict_f32(
const arm_svm_sigmoid_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t vec1;
float32x4_t coef0 = vdupq_n_f32(S->coef0);
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
accuma = vmlaq_f32(accuma, vec1,vec2a);
accumb = vmlaq_f32(accumb, vec1,vec2b);
accumc = vmlaq_f32(accumc, vec1,vec2c);
accumd = vmlaq_f32(accumd, vec1,vec2d);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0);
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1);
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2);
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + *pIn * *pSupporta++, dotV,0);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + *pIn * *pSupportb++, dotV,1);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + *pIn * *pSupportc++, dotV,2);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + *pIn * *pSupportd++, dotV,3);
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
// To vectorize later
dotV = vmulq_n_f32(dotV, S->gamma);
dotV = vaddq_f32(dotV, coef0);
dotV = vtanhq_f32(dotV);
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0f;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
accum = vmlaq_f32(accum, vec1,vec2);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + *pIn++ * *pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * tanhf(S->gamma * dot + S->coef0);
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_sigmoid_predict_f32(
const arm_svm_sigmoid_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
uint32_t i,j;
const float32_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + in[j]* *pSupport++;
}
sum += S->dualCoefficients[i] * tanhf(S->gamma * dot + S->coef0);
}
*pResult=S->classes[STEP(sum)];
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of sigmoidsvm group
*/