Initial commit

This commit is contained in:
Attila Body 2025-06-09 18:06:36 +02:00
commit ce3dd83b9f
Signed by: abody
GPG key ID: BD0C6214E68FB5CF
1470 changed files with 1054449 additions and 0 deletions

View file

@ -0,0 +1,29 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: BayesFunctions.c
* Description: Combination of all bayes function source files.
*
* $Date: 16. March 2020
* $Revision: V1.0.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_gaussian_naive_bayes_predict_f32.c"

View file

@ -0,0 +1,27 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: BayesFunctions.c
* Description: Combination of all bayes function f16 source files.
*
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_gaussian_naive_bayes_predict_f16.c"

View file

@ -0,0 +1,23 @@
cmake_minimum_required (VERSION 3.14)
project(CMSISDSPBayes)
include(configLib)
include(configDsp)
file(GLOB SRC "./*_*.c")
add_library(CMSISDSPBayes STATIC)
target_sources(CMSISDSPBayes PRIVATE arm_gaussian_naive_bayes_predict_f32.c)
configLib(CMSISDSPBayes ${ROOT})
configDsp(CMSISDSPBayes ${ROOT})
### Includes
target_include_directories(CMSISDSPBayes PUBLIC "${DSP}/Include")
if ((NOT ARMAC5) AND (NOT DISABLEFLOAT16))
target_sources(CMSISDSPBayes PRIVATE arm_gaussian_naive_bayes_predict_f16.c)
endif()

View file

@ -0,0 +1,207 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_naive_gaussian_bayes_predict_f16
* Description: Naive Gaussian Bayesian Estimator
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/bayes_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup groupBayes
* @{
*/
/**
* @brief Naive Gaussian Bayesian Estimator
*
* @param[in] *S points to a naive bayes instance structure
* @param[in] *in points to the elements of the input vector.
* @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
* @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
* @return The predicted class
*
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math_f16.h"
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
const float16_t * in,
float16_t *pOutputProbabilities,
float16_t *pBufferB
)
{
uint32_t nbClass;
const float16_t *pTheta = S->theta;
const float16_t *pSigma = S->sigma;
float16_t *buffer = pOutputProbabilities;
const float16_t *pIn = in;
float16_t result;
f16x8_t vsigma;
_Float16 tmp;
f16x8_t vacc1, vacc2;
uint32_t index;
float16_t *logclassPriors=pBufferB;
float16_t *pLogPrior = logclassPriors;
arm_vlog_f16((float16_t *) S->classPriors, logclassPriors, S->numberOfClasses);
pTheta = S->theta;
pSigma = S->sigma;
for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) {
pIn = in;
vacc1 = vdupq_n_f16(0.0f16);
vacc2 = vdupq_n_f16(0.0f16);
uint32_t blkCnt =S->vectorDimension >> 3;
while (blkCnt > 0U) {
f16x8_t vinvSigma, vtmp;
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
vacc1 = vaddq(vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)));
vinvSigma = vrecip_medprec_f16(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq(vacc2, vtmp, vinvSigma);
pIn += 8;
pTheta += 8;
pSigma += 8;
blkCnt--;
}
blkCnt = S->vectorDimension & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vinvSigma, vtmp;
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
vacc1 =
vaddq_m_f16(vacc1, vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)), p0);
vinvSigma = vrecip_medprec_f16(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq_m_f16(vacc2, vtmp, vinvSigma, p0);
pTheta += blkCnt;
pSigma += blkCnt;
}
tmp = -0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc1);
tmp -= 0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc2);
*buffer = (_Float16)tmp + (_Float16)*pLogPrior++;
buffer++;
}
arm_max_f16(pOutputProbabilities, S->numberOfClasses, &result, &index);
return (index);
}
#else
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
const float16_t * in,
float16_t *pOutputProbabilities,
float16_t *pBufferB)
{
uint32_t nbClass;
uint32_t nbDim;
const float16_t *pPrior = S->classPriors;
const float16_t *pTheta = S->theta;
const float16_t *pSigma = S->sigma;
float16_t *buffer = pOutputProbabilities;
const float16_t *pIn=in;
float16_t result;
_Float16 sigma;
_Float16 tmp;
_Float16 acc1,acc2;
uint32_t index;
(void)pBufferB;
pTheta=S->theta;
pSigma=S->sigma;
for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++)
{
pIn = in;
tmp = 0.0f16;
acc1 = 0.0f16;
acc2 = 0.0f16;
for(nbDim = 0; nbDim < S->vectorDimension; nbDim++)
{
sigma = (_Float16)*pSigma + (_Float16)S->epsilon;
acc1 += (_Float16)logf(2.0f * PI * (float32_t)sigma);
acc2 += ((_Float16)*pIn - (_Float16)*pTheta) * ((_Float16)*pIn - (_Float16)*pTheta) / (_Float16)sigma;
pIn++;
pTheta++;
pSigma++;
}
tmp = -0.5f16 * (_Float16)acc1;
tmp -= 0.5f16 * (_Float16)acc2;
*buffer = (_Float16)tmp + (_Float16)logf((float32_t)*pPrior++);
buffer++;
}
arm_max_f16(pOutputProbabilities,S->numberOfClasses,&result,&index);
return(index);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of groupBayes group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

View file

@ -0,0 +1,396 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_naive_gaussian_bayes_predict_f32
* Description: Naive Gaussian Bayesian Estimator
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/bayes_functions.h"
#include <limits.h>
#include <math.h>
#define PI_F 3.1415926535897932384626433832795f
#define DPI_F (2.0f*3.1415926535897932384626433832795f)
/**
* @addtogroup groupBayes
* @{
*/
/**
* @brief Naive Gaussian Bayesian Estimator
*
* @param[in] *S points to a naive bayes instance structure
* @param[in] *in points to the elements of the input vector.
* @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
* @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
* @return The predicted class
*
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math.h"
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
const float32_t * in,
float32_t *pOutputProbabilities,
float32_t *pBufferB
)
{
uint32_t nbClass;
const float32_t *pTheta = S->theta;
const float32_t *pSigma = S->sigma;
float32_t *buffer = pOutputProbabilities;
const float32_t *pIn = in;
float32_t result;
f32x4_t vsigma;
float32_t tmp;
f32x4_t vacc1, vacc2;
uint32_t index;
float32_t *logclassPriors=pBufferB;
float32_t *pLogPrior = logclassPriors;
arm_vlog_f32((float32_t *) S->classPriors, logclassPriors, S->numberOfClasses);
pTheta = S->theta;
pSigma = S->sigma;
for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) {
pIn = in;
vacc1 = vdupq_n_f32(0);
vacc2 = vdupq_n_f32(0);
uint32_t blkCnt =S->vectorDimension >> 2;
while (blkCnt > 0U) {
f32x4_t vinvSigma, vtmp;
vsigma = vaddq_n_f32(vld1q(pSigma), S->epsilon);
vacc1 = vaddq(vacc1, vlogq_f32(vmulq_n_f32(vsigma, 2.0f * PI)));
vinvSigma = vrecip_medprec_f32(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq(vacc2, vtmp, vinvSigma);
pIn += 4;
pTheta += 4;
pSigma += 4;
blkCnt--;
}
blkCnt = S->vectorDimension & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vinvSigma, vtmp;
vsigma = vaddq_n_f32(vld1q(pSigma), S->epsilon);
vacc1 =
vaddq_m_f32(vacc1, vacc1, vlogq_f32(vmulq_n_f32(vsigma, 2.0f * PI)), p0);
vinvSigma = vrecip_medprec_f32(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq_m_f32(vacc2, vtmp, vinvSigma, p0);
pTheta += blkCnt;
pSigma += blkCnt;
}
tmp = -0.5f * vecAddAcrossF32Mve(vacc1);
tmp -= 0.5f * vecAddAcrossF32Mve(vacc2);
*buffer = tmp + *pLogPrior++;
buffer++;
}
arm_max_f32(pOutputProbabilities, S->numberOfClasses, &result, &index);
return (index);
}
#else
#if defined(ARM_MATH_NEON)
#include "NEMath.h"
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
const float32_t * in,
float32_t *pOutputProbabilities,
float32_t *pBufferB)
{
const float32_t *pPrior = S->classPriors;
const float32_t *pTheta = S->theta;
const float32_t *pSigma = S->sigma;
const float32_t *pTheta1 = S->theta + S->vectorDimension;
const float32_t *pSigma1 = S->sigma + S->vectorDimension;
float32_t *buffer = pOutputProbabilities;
const float32_t *pIn=in;
float32_t result;
float32_t sigma,sigma1;
float32_t tmp,tmp1;
uint32_t index;
uint32_t vecBlkCnt;
uint32_t classBlkCnt;
float32x4_t epsilonV;
float32x4_t sigmaV,sigmaV1;
float32x4_t tmpV,tmpVb,tmpV1;
float32x2_t tmpV2;
float32x4_t thetaV,thetaV1;
float32x4_t inV;
(void)pBufferB;
epsilonV = vdupq_n_f32(S->epsilon);
classBlkCnt = S->numberOfClasses >> 1;
while(classBlkCnt > 0)
{
pIn = in;
tmp = logf(*pPrior++);
tmp1 = logf(*pPrior++);
tmpV = vdupq_n_f32(0.0f);
tmpV1 = vdupq_n_f32(0.0f);
vecBlkCnt = S->vectorDimension >> 2;
while(vecBlkCnt > 0)
{
sigmaV = vld1q_f32(pSigma);
thetaV = vld1q_f32(pTheta);
sigmaV1 = vld1q_f32(pSigma1);
thetaV1 = vld1q_f32(pTheta1);
inV = vld1q_f32(pIn);
sigmaV = vaddq_f32(sigmaV, epsilonV);
sigmaV1 = vaddq_f32(sigmaV1, epsilonV);
tmpVb = vmulq_n_f32(sigmaV,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f);
tmpVb = vmulq_n_f32(sigmaV1,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5f);
tmpVb = vsubq_f32(inV,thetaV);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV));
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f);
tmpVb = vsubq_f32(inV,thetaV1);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV1));
tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5f);
pIn += 4;
pTheta += 4;
pSigma += 4;
pTheta1 += 4;
pSigma1 += 4;
vecBlkCnt--;
}
tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV));
tmp += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1);
tmpV2 = vpadd_f32(vget_low_f32(tmpV1),vget_high_f32(tmpV1));
tmp1 += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1);
vecBlkCnt = S->vectorDimension & 3;
while(vecBlkCnt > 0)
{
sigma = *pSigma + S->epsilon;
sigma1 = *pSigma1 + S->epsilon;
tmp -= 0.5f*logf(2.0f * PI_F * sigma);
tmp -= 0.5f*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
tmp1 -= 0.5f*logf(2.0f * PI_F * sigma1);
tmp1 -= 0.5f*(*pIn - *pTheta1) * (*pIn - *pTheta1) / sigma1;
pIn++;
pTheta++;
pSigma++;
pTheta1++;
pSigma1++;
vecBlkCnt--;
}
*buffer++ = tmp;
*buffer++ = tmp1;
pSigma += S->vectorDimension;
pTheta += S->vectorDimension;
pSigma1 += S->vectorDimension;
pTheta1 += S->vectorDimension;
classBlkCnt--;
}
classBlkCnt = S->numberOfClasses & 1;
while(classBlkCnt > 0)
{
pIn = in;
tmp = logf(*pPrior++);
tmpV = vdupq_n_f32(0.0f);
vecBlkCnt = S->vectorDimension >> 2;
while(vecBlkCnt > 0)
{
sigmaV = vld1q_f32(pSigma);
thetaV = vld1q_f32(pTheta);
inV = vld1q_f32(pIn);
sigmaV = vaddq_f32(sigmaV, epsilonV);
tmpVb = vmulq_n_f32(sigmaV,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f);
tmpVb = vsubq_f32(inV,thetaV);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV));
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f);
pIn += 4;
pTheta += 4;
pSigma += 4;
vecBlkCnt--;
}
tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV));
tmp += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1);
vecBlkCnt = S->vectorDimension & 3;
while(vecBlkCnt > 0)
{
sigma = *pSigma + S->epsilon;
tmp -= 0.5f*logf(2.0f * PI_F * sigma);
tmp -= 0.5f*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
pIn++;
pTheta++;
pSigma++;
vecBlkCnt--;
}
*buffer++ = tmp;
classBlkCnt--;
}
arm_max_f32(pOutputProbabilities,S->numberOfClasses,&result,&index);
return(index);
}
#else
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
const float32_t * in,
float32_t *pOutputProbabilities,
float32_t *pBufferB)
{
uint32_t nbClass;
uint32_t nbDim;
const float32_t *pPrior = S->classPriors;
const float32_t *pTheta = S->theta;
const float32_t *pSigma = S->sigma;
float32_t *buffer = pOutputProbabilities;
const float32_t *pIn=in;
float32_t result;
float32_t sigma;
float32_t tmp;
float32_t acc1,acc2;
uint32_t index;
(void)pBufferB;
pTheta=S->theta;
pSigma=S->sigma;
for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++)
{
pIn = in;
tmp = 0.0;
acc1 = 0.0f;
acc2 = 0.0f;
for(nbDim = 0; nbDim < S->vectorDimension; nbDim++)
{
sigma = *pSigma + S->epsilon;
acc1 += logf(2.0f * PI_F * sigma);
acc2 += (*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
pIn++;
pTheta++;
pSigma++;
}
tmp = -0.5f * acc1;
tmp -= 0.5f * acc2;
*buffer = tmp + logf(*pPrior++);
buffer++;
}
arm_max_f32(pOutputProbabilities,S->numberOfClasses,&result,&index);
return(index);
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of groupBayes group
*/