f4ll_c/crcscheduler.c
2019-11-20 21:13:52 +01:00

179 lines
5 KiB
C

/*
* interrupt.c
*
* Created on: Aug 29, 2019
* Author: abody
*/
#include <f4ll_c/crcscheduler.h>
#include "main.h"
#include <string.h>
#include <platform/crc_ll.h>
#include "diag.h"
#include "f4ll_c/dmahelper.h"
#ifndef DIAG_CRC_CALC_START
# define DIAG_CRC_CALC_START()
#endif
#ifndef DIAG_CRC_CALC_END
# define DIAG_CRC_CALC_END()
#endif
#ifndef DIAG_INTERRUPT_IN
# define DIAG_INTERRUPT_IN()
#endif
#ifndef DIAG_INTERRUPT_OUT
# define DIAG_INTERRUPT_OUT()
#endif
void Crc_InitStatus(struct crcstatus_t *st, DMA_TypeDef *dma, uint32_t stream)
{
Dma_Init(&st->dmaInfo, dma, stream);
LL_DMA_EnableIT_TC(dma, stream);
LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR);
st->activeSlot = NULL;
st->first = NULL;
}
void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot, struct crcslottask_t *tasks, uint8_t taskCount)
{
slot->count = taskCount;
slot->tasks = tasks;
memset(tasks, 0, sizeof(*tasks)*taskCount);
uint32_t prim = __get_PRIMASK();
__disable_irq();
slot->next = status->first;
status->first = slot;
__set_PRIMASK(prim);
}
uint8_t Crc_GetActiveTask(struct crcslotlistitem_t **slot_out, struct crcstatus_t volatile *status)
{
uint8_t ret;
uint32_t prim = __get_PRIMASK();
__disable_irq();
ret = status->activeTask;
if(slot_out)
*slot_out = (struct crcslotlistitem_t *) status->activeSlot;
__set_PRIMASK(prim);
return ret;
}
uint8_t Crc_Enqueue(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task,
uint8_t *address, uint16_t len, void (*callback)(void*, uint32_t, uint8_t), void* callbackParam)
{
uint32_t prim = __get_PRIMASK();
uint16_t need_start;
struct crcstatus_t volatile *st = status;
while(st->activeSlot == slot && st->activeTask == task);
__disable_irq();
need_start = (st->activeSlot == NULL);
slot->tasks[task].address = need_start ? NULL : address;
slot->tasks[task].wordCount = (len+3)/4;
slot->tasks[task].callback = callback;
slot->tasks[task].callbackParam = callbackParam;
if(need_start) {
status->activeSlot = slot;
status->activeTask = task;
}
__set_PRIMASK(prim);
if(need_start) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(status->dmaInfo.dma, status->dmaInfo.stream, (uint32_t)address);
LL_DMA_SetDataLength(status->dmaInfo.dma, status->dmaInfo.stream, (len+3)/4);
DIAG_CRC_CALC_START();
LL_DMA_EnableStream(status->dmaInfo.dma, status->dmaInfo.stream);
}
return need_start;
}
void Crc_WaitResults(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task)
{
struct crcslotlistitem_t *slotQueued;
while(Crc_IsSlotQueued(slot, task));
while(Crc_GetActiveTask(&slotQueued, status) == task && slotQueued == slot);
}
uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t *address, uint16_t len)
{
uint32_t result;
Crc_Enqueue(status, slot, task, address, len, NULL, &result);
while((struct crcslotlistitem_t volatile *)slot->tasks[task].callbackParam);
return result;
}
// only called from ISR context
static void StartNextCrcTask(struct crcstatus_t *status)
{
char moreTasks;
uint8_t index = 0;
do {
struct crcslotlistitem_t *slot = status->first;
moreTasks = 0;
while(slot) {
if(index < slot->count) {
if(slot->tasks[index].address) {
status->activeSlot = slot;
status->activeTask = index;
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(status->dmaInfo.dma, status->dmaInfo.stream, (uint32_t)slot->tasks[index].address);
LL_DMA_SetDataLength(status->dmaInfo.dma, status->dmaInfo.stream, slot->tasks[index].wordCount);
LL_DMA_EnableStream(status->dmaInfo.dma, status->dmaInfo.stream);
slot->tasks[index].address = NULL; // marking as started
return;
}
if(index + 1 < slot->count)
moreTasks = 1;
}
slot = slot->next;
}
++index;
} while(moreTasks);
status->activeSlot = NULL;
}
void Crc_HandleDmaIrq(struct crcstatus_t *status)
{
DIAG_INTERRUPT_IN();
if(*status->dmaInfo.isReg & status->dmaInfo.tcMask) { // DMA transfer complete
*status->dmaInfo.ifcReg = status->dmaInfo.tcMask;
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot) {
struct crcslottask_t *tsk = &status->activeSlot->tasks[status->activeTask];
if(tsk->callback)
tsk->callback(tsk->callbackParam, CRC->DR, 1);
else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = CRC->DR;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END();
StartNextCrcTask(status);
}
}
else if(*status->dmaInfo.isReg & status->dmaInfo.teMask) {
*status->dmaInfo.ifcReg = status->dmaInfo.teMask;
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot) {
struct crcslottask_t *tsk = &status->activeSlot->tasks[status->activeTask];
if(tsk->callback)
tsk->callback(tsk->callbackParam, CRC->DR, 0);
else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = 0xffffffff;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END();
StartNextCrcTask(status);
}
}
DIAG_INTERRUPT_OUT();
}