crcscheduler: avoid static function for unit tests

unifying execution paths of DMA interrupt handler (error/success)
This commit is contained in:
Attila Body 2019-11-28 11:34:41 +01:00
parent 683cf43f4b
commit 7079f939d0
2 changed files with 33 additions and 40 deletions

View file

@ -27,6 +27,12 @@
# define DIAG_INTERRUPT_OUT() # define DIAG_INTERRUPT_OUT()
#endif #endif
#ifdef UNITTEST
#define STATIC_MOCKME
#else
#define STATIC_MOCKME static
#endif
void Crc_InitStatus(struct crcstatus_t *st, CRC_TypeDef *crcUnit, DMA_TypeDef *dma, uint32_t stream) void Crc_InitStatus(struct crcstatus_t *st, CRC_TypeDef *crcUnit, DMA_TypeDef *dma, uint32_t stream)
{ {
st->crcUnit = crcUnit; st->crcUnit = crcUnit;
@ -35,7 +41,7 @@ void Crc_InitStatus(struct crcstatus_t *st, CRC_TypeDef *crcUnit, DMA_TypeDef *d
LL_DMA_EnableIT_TE(dma, stream); LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&crcUnit->DR); LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&crcUnit->DR);
st->activeSlot = NULL; st->activeSlot = NULL;
st->first = NULL; st->firstSlot = NULL;
} }
void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot, struct crcslottask_t *tasks, uint8_t taskCount) void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot, struct crcslottask_t *tasks, uint8_t taskCount)
@ -46,8 +52,8 @@ void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot,
uint32_t prim = __get_PRIMASK(); uint32_t prim = __get_PRIMASK();
__disable_irq(); __disable_irq();
slot->next = status->first; slot->next = status->firstSlot;
status->first = slot; status->firstSlot = slot;
__set_PRIMASK(prim); __set_PRIMASK(prim);
} }
@ -73,7 +79,7 @@ uint8_t Crc_Enqueue(struct crcstatus_t *status, struct crcslotlistitem_t *slot,
uint16_t need_start; uint16_t need_start;
struct crcstatus_t volatile *st = status; struct crcstatus_t volatile *st = status;
while(st->activeSlot == slot && st->activeTask == task); while(Crc_IsSlotBusy(slot, task));
__disable_irq(); __disable_irq();
need_start = (st->activeSlot == NULL); need_start = (st->activeSlot == NULL);
slot->tasks[task].address = need_start ? NULL : address; slot->tasks[task].address = need_start ? NULL : address;
@ -96,15 +102,6 @@ uint8_t Crc_Enqueue(struct crcstatus_t *status, struct crcslotlistitem_t *slot,
return need_start; return need_start;
} }
void Crc_WaitResults(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task)
{
struct crcslotlistitem_t *slotQueued;
while(Crc_IsSlotQueued(slot, task));
while(Crc_GetActiveTask(&slotQueued, status) == task && slotQueued == slot);
}
uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t *address, uint16_t len) uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t *address, uint16_t len)
{ {
uint32_t result; uint32_t result;
@ -114,13 +111,13 @@ uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot,
} }
// only called from ISR context // only called from ISR context
static void StartNextCrcTask(struct crcstatus_t *status) STATIC_MOCKME void Crc_StartNextTask(struct crcstatus_t *status)
{ {
char moreTasks; char moreTasks;
uint8_t index = 0; uint8_t index = 0;
do { do {
struct crcslotlistitem_t *slot = status->first; struct crcslotlistitem_t *slot = status->firstSlot;
moreTasks = 0; moreTasks = 0;
while(slot) { while(slot) {
if(index < slot->count) { if(index < slot->count) {
@ -144,35 +141,27 @@ static void StartNextCrcTask(struct crcstatus_t *status)
status->activeSlot = NULL; status->activeSlot = NULL;
} }
// !!!PORTABILITY WARNING!!! using registers and bits directly. should be reviewed extremely t
void Crc_HandleDmaIrq(struct crcstatus_t *status) void Crc_HandleDmaIrq(struct crcstatus_t *status)
{ {
uint8_t success = 1;
DIAG_INTERRUPT_IN(); DIAG_INTERRUPT_IN();
if(*status->dmaInfo.isReg & status->dmaInfo.tcMask) { // DMA transfer complete if((*status->dmaInfo.isReg & status->dmaInfo.tcMask) ||
*status->dmaInfo.ifcReg = status->dmaInfo.tcMask; (*status->dmaInfo.isReg & status->dmaInfo.teMask)) {
if(*status->dmaInfo.isReg & status->dmaInfo.teMask)
success = 0;
*status->dmaInfo.ifcReg = *status->dmaInfo.isReg & (status->dmaInfo.tcMask | status->dmaInfo.teMask);
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream); LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot) { if(status->activeSlot) {
struct crcslottask_t *tsk = &status->activeSlot->tasks[status->activeTask]; struct crcslottask_t *tsk = &status->activeSlot->tasks[status->activeTask];
if(tsk->callback) if(tsk->callback)
tsk->callback(tsk->callbackParam, status->crcUnit->DR, 1); tsk->callback(tsk->callbackParam, status->crcUnit->DR, success);
else if(tsk->callbackParam) else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = status->crcUnit->DR; *(uint32_t*)tsk->callbackParam = success ? status->crcUnit->DR : 0xffffffff;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END(); DIAG_CRC_CALC_END();
StartNextCrcTask(status); Crc_StartNextTask(status);
}
}
else if(*status->dmaInfo.isReg & status->dmaInfo.teMask) {
*status->dmaInfo.ifcReg = status->dmaInfo.teMask;
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot) {
struct crcslottask_t *tsk = &status->activeSlot->tasks[status->activeTask];
if(tsk->callback)
tsk->callback(tsk->callbackParam, status->crcUnit->DR, 0);
else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = 0xffffffff;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END();
StartNextCrcTask(status);
} }
} }
DIAG_INTERRUPT_OUT(); DIAG_INTERRUPT_OUT();

View file

@ -39,26 +39,30 @@ struct crcstatus_t {
struct dmainfo_t dmaInfo; struct dmainfo_t dmaInfo;
struct crcslotlistitem_t *activeSlot; struct crcslotlistitem_t *activeSlot;
uint8_t activeTask; uint8_t activeTask;
struct crcslotlistitem_t *first; struct crcslotlistitem_t *firstSlot;
}; };
void Crc_InitStatus(struct crcstatus_t *status, CRC_TypeDef *crcUnit, DMA_TypeDef *dma, uint32_t stream); void Crc_InitStatus(struct crcstatus_t *status, CRC_TypeDef *crcUnit, DMA_TypeDef *dma, uint32_t stream);
uint8_t Crc_GetActiveTask(struct crcslotlistitem_t **slot_out, struct crcstatus_t volatile *status); uint8_t Crc_GetActiveTask(struct crcslotlistitem_t **slot_out, struct crcstatus_t volatile *status);
static inline uint8_t Crc_IsSlotQueued(struct crcslotlistitem_t volatile *slot, uint8_t task) { static inline uint8_t Crc_IsSlotQueued(struct crcslotlistitem_t *slot, uint8_t task) {
return slot->tasks[task].address != NULL; return ((struct crcslottask_t volatile)slot->tasks[task]).address != NULL;
} }
static inline uint8_t Crc_IsSlotActive(struct crcslotlistitem_t volatile *slot, uint8_t task) { static inline uint8_t Crc_IsSlotBusy(struct crcslotlistitem_t *slot, uint8_t task) {
return slot->tasks[task].callback != NULL || slot->tasks[task].callbackParam != NULL; struct crcslottask_t volatile *taskPtr = &slot->tasks[task];
return taskPtr->callback != NULL || taskPtr->callbackParam != NULL;
}
static inline void Crc_WaitResults(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task) {
while(Crc_IsSlotBusy(slot, task));
} }
void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot, struct crcslottask_t *tasks, uint8_t taskCount); void Crc_AttachTask(struct crcstatus_t *status, struct crcslotlistitem_t *slot, struct crcslottask_t *tasks, uint8_t taskCount);
uint8_t Crc_Enqueue(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t Crc_Enqueue(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task,
uint8_t *address, uint16_t len, void (*callback)(void*, uint32_t, uint8_t), void* callbackParam); uint8_t *address, uint16_t len, void (*callback)(void*, uint32_t, uint8_t), void* callbackParam);
void Crc_WaitResults(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task);
uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t *address, uint16_t len); uint32_t Crc_Compute(struct crcstatus_t *status, struct crcslotlistitem_t *slot, uint8_t task, uint8_t *address, uint16_t len);
void Crc_ComputeAsync(struct crcstatus_t *status, uint8_t slot, void Crc_ComputeAsync(struct crcstatus_t *status, uint8_t slot,
uint8_t *address, uint16_t len, uint8_t *address, uint16_t len,