This commit is contained in:
Attila Body 2025-06-08 18:41:07 +02:00
parent 3253c9413e
commit a4e25d702b
Signed by: abody
GPG key ID: BD0C6214E68FB5CF
14 changed files with 398 additions and 399 deletions

View file

@ -6,14 +6,14 @@
*/ */
#ifdef USE_CPLUSPLUS #ifdef USE_CPLUSPLUS
#include <string.h>
#include <stdlib.h>
#include "f4ll/packetusart.h"
#include "f4ll/crchandler.h"
#include "f4ll/memcpydma.h"
#include "f4ll/consolehandler.h" #include "f4ll/consolehandler.h"
#include "f4ll/crc_handler.h"
#include "f4ll/irqlock.h" #include "f4ll/irqlock.h"
#include "f4ll/memcpydma.h"
#include "f4ll/packetusart.h"
#include "f4ll/strutil.h" #include "f4ll/strutil.h"
#include <stdlib.h>
#include <string.h>
extern "C" { extern "C" {
#include "main.h" #include "main.h"
@ -38,8 +38,8 @@ extern "C" void MainLoop()
f4ll::MemcpyDma::Init(MEMCPY_DMA_ENGINE, MEMCPY_DMA_STREAM); f4ll::MemcpyDma::Init(MEMCPY_DMA_ENGINE, MEMCPY_DMA_STREAM);
f4ll::CrcHandler::Init(DMA2, LL_DMA_STREAM_4); f4ll::crc_handler::Init(DMA2, LL_DMA_STREAM_4);
f4ll::ConsoleHandler::Init(UART4, CONSOLE_DMA_ENGINE, 0u, CONSOLE_TX_DMA_STREAM); f4ll::ConsoleHandler::Init(UART4, CONSOLE_DMA_ENGINE, 0u, CONSOLE_TX_DMA_STREAM);
f4ll::PacketUsart u1{ USART1, DMA2, LL_DMA_STREAM_2, LL_DMA_STREAM_7 }; f4ll::PacketUsart u1{ USART1, DMA2, LL_DMA_STREAM_2, LL_DMA_STREAM_7 };
f4ll::PacketUsart u2{ USART2, DMA1, LL_DMA_STREAM_5, LL_DMA_STREAM_6 }; f4ll::PacketUsart u2{ USART2, DMA1, LL_DMA_STREAM_5, LL_DMA_STREAM_6 };

View file

@ -1,4 +1,6 @@
#include "f4ll/console_handler.h" #include <f4ll/console_handler.h>
#include <f4ll/crc_handler.h>
#include <f4ll/memcpy_dma.h>
#include <config.h> #include <config.h>
#include <globals.h> #include <globals.h>
@ -6,73 +8,80 @@
void usart1_rx_dma_isr(void) void usart1_rx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleRxDmaIrq(g_usarts[USART1_OFFSET]); f4ll::PacketUsart::rx_dma_isr(g_usarts[USART1_OFFSET]);
} }
void usart1_tx_dma_isr(void) void usart1_tx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleTxDmaIrq(g_usarts[USART1_OFFSET]); f4ll::PacketUsart::tx_dma_isr(g_usarts[USART1_OFFSET]);
} }
void usart1_isr(void) void usart1_isr(void)
{ {
f4ll::PacketUsart::HandleUsartIrq(g_usarts[USART1_OFFSET]); f4ll::PacketUsart::usart_isr(g_usarts[USART1_OFFSET]);
} }
// //
void usart2_rx_dma_isr(void) void usart2_rx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleRxDmaIrq(g_usarts[USART2_OFFSET]); f4ll::PacketUsart::rx_dma_isr(g_usarts[USART2_OFFSET]);
} }
void usart2_tx_dma_isr(void) void usart2_tx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleTxDmaIrq(g_usarts[USART2_OFFSET]); f4ll::PacketUsart::tx_dma_isr(g_usarts[USART2_OFFSET]);
} }
void usart2_isr(void) void usart2_isr(void)
{ {
f4ll::PacketUsart::HandleUsartIrq(g_usarts[USART2_OFFSET]); f4ll::PacketUsart::usart_isr(g_usarts[USART2_OFFSET]);
} }
// //
void usart3_rx_dma_isr(void) void usart3_rx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleRxDmaIrq(g_usarts[USART3_OFFSET]); f4ll::PacketUsart::rx_dma_isr(g_usarts[USART3_OFFSET]);
} }
void usart3_tx_dma_isr(void) void usart3_tx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleTxDmaIrq(g_usarts[USART3_OFFSET]); f4ll::PacketUsart::tx_dma_isr(g_usarts[USART3_OFFSET]);
} }
void usart3_isr(void) void usart3_isr(void)
{ {
f4ll::PacketUsart::HandleUsartIrq(g_usarts[USART3_OFFSET]); f4ll::PacketUsart::usart_isr(g_usarts[USART3_OFFSET]);
} }
// //
void usart4_rx_dma_isr(void) {} // console void usart4_rx_dma_isr(void) {} // console
void usart4_tx_dma_isr(void) void usart4_tx_dma_isr(void)
{ {
f4ll::console_handler::HandleTxDmaIrq(&f4ll::console_handler::instance()); f4ll::console_handler::tx_dma_isr(&f4ll::console_handler::instance());
} // console } // console
void usart4_isr(void) void usart4_isr(void)
{ {
f4ll::console_handler::HandleUsartIrq(&f4ll::console_handler::instance()); f4ll::console_handler::usart_isr(&f4ll::console_handler::instance());
} }
// //
void usart6_rx_dma_isr(void) void usart6_rx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleRxDmaIrq(g_usarts[USART6_OFFSET]); f4ll::PacketUsart::rx_dma_isr(g_usarts[USART6_OFFSET]);
} }
void usart6_tx_dma_isr(void) void usart6_tx_dma_isr(void)
{ {
f4ll::PacketUsart::HandleTxDmaIrq(g_usarts[USART6_OFFSET]); f4ll::PacketUsart::tx_dma_isr(g_usarts[USART6_OFFSET]);
} }
void usart6_isr(void) void usart6_isr(void)
{ {
f4ll::PacketUsart::HandleUsartIrq(g_usarts[USART6_OFFSET]); f4ll::PacketUsart::usart_isr(g_usarts[USART6_OFFSET]);
} }
void m2m1_dma_isr(void) {} // m2mcpy void m2m1_dma_isr(void)
void m2m2_dma_isr(void) {} // crc {
f4ll::memcpy_dma::instance().dma_transfer_completed();
} // m2mcpy
void m2m2_dma_isr(void)
{
f4ll::crc_handler::instance().dma_transfer_completed();
} // crc

View file

@ -24,16 +24,16 @@ private:
console_handler(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx); console_handler(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx);
// LL_UsartCore pure virtual function implementations // LL_UsartCore pure virtual function implementations
virtual void ReceiverIdle(void); virtual void receiver_idle(void);
virtual void TransmissionComplete(void); virtual void transmission_complete(void);
virtual void FramingError(void); virtual void framing_error(void);
virtual void Overrun(void); virtual void overrun(void);
virtual void RxDmaTransferComplete(void); virtual void rx_dma_transfer_complete(void);
virtual void RxDmaHalfTransfer(void); virtual void rx_dma_half_transfer(void);
virtual void RxDmaError(dma_helper::DmaErrorType reason); virtual void rx_dma_error(dma_helper::dma_error_type reason);
virtual void TxDmaTransferComplete(void); virtual void tx_dma_transfer_complete(void);
virtual void TxDmaHalfTransfer(void); virtual void tx_dma_half_transfer(void);
virtual void TxDmaError(dma_helper::DmaErrorType reason); virtual void tx_dma_error(dma_helper::dma_error_type reason);
char m_buffer[128]; char m_buffer[128];
uint16_t m_used = 0; uint16_t m_used = 0;

View file

@ -1,96 +1,90 @@
/* /*
* ll_crchandler.h * ll_crc_handler.h
* *
* Created on: Oct 26, 2019 * Created on: Oct 26, 2019
* Author: compi * Author: compi
*/ */
#pragma once
#ifndef LL_CRCHANDLER_H_
#define LL_CRCHANDLER_H_
#include <f4ll/dma_helper.h> #include <f4ll/dma_helper.h>
#include <f4ll/singleton.h> #include <f4ll/singleton.h>
#include <inttypes.h> #include <inttypes.h>
#include <platform/dma_ll.h> #include <platform/dma_ll.h>
extern "C" void _HandleCrcDmaIrq(void);
namespace f4ll { namespace f4ll {
class CrcHandler : public singleton<CrcHandler> class crc_handler : public singleton<crc_handler>
{ {
friend class singleton<CrcHandler>; friend class singleton<crc_handler>;
public: public:
struct ICallback struct icallback
{ {
virtual void CrcSucceeded(uintptr_t callbackParam, uint32_t crc, uint8_t task) = 0; virtual void crc_succeeded(uintptr_t callback_param, uint32_t crc, uint8_t task) = 0;
virtual void CrcFailed(uintptr_t callbackParam, uint32_t crc, uint8_t task) = 0; virtual void crc_failed(uintptr_t callback_param, uint32_t crc, uint8_t task) = 0;
}; };
class SlotBase class slot_base
{ {
friend class CrcHandler; friend class crc_handler;
public: public:
struct CrcTask struct crc_task
{ {
void const *m_address; // changed to nullptr when execution starts void const *m_address; // changed to nullptr when execution starts
uint16_t m_wordCount; uint16_t m_word_count;
ICallback *m_callback; icallback *m_callback;
uintptr_t m_callbackParam; uintptr_t m_callback_param;
}; };
private: private:
SlotBase volatile *m_next = nullptr; slot_base volatile *m_next = nullptr;
uint8_t m_taskCount; uint8_t m_task_count;
virtual CrcTask volatile &operator[](int index) volatile = 0; virtual crc_task volatile &operator[](int index) volatile = 0;
protected: protected:
SlotBase(unsigned int taskCount) slot_base(unsigned int task_count)
: m_taskCount(taskCount) : m_task_count(task_count)
{ {
} }
SlotBase() = delete; slot_base() = delete;
SlotBase(SlotBase const &other) = delete; slot_base(slot_base const &other) = delete;
}; };
template <uint8_t n> class Slot : public SlotBase template <uint8_t n> class slot : public slot_base
{ {
public: public:
Slot() slot()
: SlotBase(n) : slot_base(n)
{ {
} }
virtual CrcTask volatile &operator[](int index) volatile { return m_tasks[index]; } virtual crc_task volatile &operator[](int index) volatile { return m_tasks[index]; }
private: private:
Slot::CrcTask m_tasks[n]; slot::crc_task m_tasks[n];
}; };
void AttachSlot(SlotBase &slot); void attach_slot(slot_base &slot);
bool Enqueue(SlotBase &slot, uint8_t task, void const *address, uint16_t len, ICallback *cb, uintptr_t cbParam); bool enqueue(slot_base &slot, uint8_t task, void const *address, uint16_t len, icallback *cb, uintptr_t cb_param);
uint32_t Compute(SlotBase &slot, uint8_t task, void const *address, uint16_t len); uint32_t compute(slot_base &slot, uint8_t task, void const *address, uint16_t len);
bool IsActive(SlotBase &slot, uint8_t task) const; bool is_active(slot_base &slot, uint8_t task) const;
bool IsQueued(SlotBase &slot, uint8_t task) const; bool is_queued(slot_base &slot, uint8_t task) const;
bool IsRunning(SlotBase &slot, uint8_t task) const; bool is_running(slot_base &slot, uint8_t task) const;
void DmaTransferCompleted(void); void dma_transfer_completed(void);
private: private:
CrcHandler(DMA_TypeDef *dma, uint32_t stream); crc_handler(DMA_TypeDef *dma, uint32_t stream);
friend void ::_HandleCrcDmaIrq(void); void start_next_task(void);
void StartNextTask(void); void wait_results(slot_base &slot, uint8_t task) const;
void WaitResults(SlotBase &slot, uint8_t task) const;
dma_helper m_dma; dma_helper m_dma;
SlotBase volatile *m_firstSlot = nullptr; slot_base volatile *m_first_slot = nullptr;
SlotBase volatile *m_activeSlot = nullptr; slot_base volatile *m_active_slot = nullptr;
int volatile m_activeTask; int volatile m_activeTask;
}; };
} // namespace f4ll } // namespace f4ll
#endif /* LL_CRCHANDLER_H_ */

View file

@ -19,40 +19,35 @@ public:
dma_helper(DMA_TypeDef *dma, uint32_t stream); dma_helper(DMA_TypeDef *dma, uint32_t stream);
dma_helper(dma_helper const &base) = default; dma_helper(dma_helper const &base) = default;
inline DMA_TypeDef *GetDma() const { return m_dma; } inline DMA_TypeDef *get_dma() const { return m_dma; }
inline uint32_t GetStream() const { return m_stream; } inline uint32_t get_stream() const { return m_stream; }
inline volatile uint32_t *GetIsReg() const { return m_isReg; } inline volatile uint32_t *get_is_reg() const { return m_is_reg; }
inline volatile uint32_t *GetIfcReg() const { return m_ifcReg; } inline volatile uint32_t *get_ifc_reg() const { return m_ifc_reg; }
inline uint32_t GetFeMask() const { return m_FEMasks[m_stream]; } inline uint32_t get_fe_mask() const { return m_fe_masks[m_stream]; }
inline uint32_t GetDmeMask() const { return m_DMEMasks[m_stream]; } inline uint32_t get_dme_mask() const { return m_dme_masks[m_stream]; }
inline uint32_t GetTeMask() const { return m_TEMasks[m_stream]; } inline uint32_t get_te_mask() const { return m_te_masks[m_stream]; }
inline uint32_t GetHtMask() const { return m_HTMasks[m_stream]; } inline uint32_t get_ht_mask() const { return m_ht_masks[m_stream]; }
inline uint32_t GetTcMask() const { return m_TCMasks[m_stream]; } inline uint32_t get_tc_mask() const { return m_tc_masks[m_stream]; }
inline bool IsEnabledIt_HT() { return LL_DMA_IsEnabledIT_HT(m_dma, m_stream) != 0; } inline bool is_enabled_it_ht() { return LL_DMA_IsEnabledIT_HT(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_TE() { return LL_DMA_IsEnabledIT_TE(m_dma, m_stream) != 0; } inline bool is_enabled_it_te() { return LL_DMA_IsEnabledIT_TE(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_TC() { return LL_DMA_IsEnabledIT_TC(m_dma, m_stream) != 0; } inline bool is_enabled_it_tc() { return LL_DMA_IsEnabledIT_TC(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_DME() { return LL_DMA_IsEnabledIT_DME(m_dma, m_stream) != 0; } inline bool is_enabled_it_dme() { return LL_DMA_IsEnabledIT_DME(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_FE() { return LL_DMA_IsEnabledIT_FE(m_dma, m_stream) != 0; } inline bool is_enabled_it_fe() { return LL_DMA_IsEnabledIT_FE(m_dma, m_stream) != 0; }
enum class DmaErrorType enum class dma_error_type { transfer, direct_mode, fifo };
{
Transfer,
DirectMode,
Fifo
};
private: private:
DMA_TypeDef *m_dma; DMA_TypeDef *m_dma;
uint32_t m_stream; uint32_t m_stream;
volatile uint32_t *m_isReg; volatile uint32_t *m_is_reg;
volatile uint32_t *m_ifcReg; volatile uint32_t *m_ifc_reg;
static const uint32_t m_FEMasks[8]; static const uint32_t m_fe_masks[8];
static const uint32_t m_DMEMasks[8]; static const uint32_t m_dme_masks[8];
static const uint32_t m_TEMasks[8]; static const uint32_t m_te_masks[8];
static const uint32_t m_HTMasks[8]; static const uint32_t m_ht_masks[8];
static const uint32_t m_TCMasks[8]; static const uint32_t m_tc_masks[8];
}; };
} /* namespace f4ll */ } /* namespace f4ll */

View file

@ -4,27 +4,24 @@
* Created on: Nov 4, 2019 * Created on: Nov 4, 2019
* Author: abody * Author: abody
*/ */
#pragma once
#ifndef LL_MEMCPY_DMA_H_
#define LL_MEMCPY_DMA_H_
#include <f4ll/dma_helper.h> #include <f4ll/dma_helper.h>
#include <f4ll/singleton.h> #include <f4ll/singleton.h>
namespace f4ll { namespace f4ll {
class MemcpyDma : public singleton<MemcpyDma>, private dma_helper class memcpy_dma : public singleton<memcpy_dma>, private dma_helper
{ {
friend class singleton<MemcpyDma>; friend class singleton<memcpy_dma>;
public: public:
void *Copy(void *dst, void const *src, uint16_t length); void *copy(void *dst, void const *src, uint16_t length);
void DmaTransferCompleted(); void dma_transfer_completed();
private: private:
MemcpyDma(DMA_TypeDef *dma, uint32_t stream); memcpy_dma(DMA_TypeDef *dma, uint32_t stream);
bool volatile m_busy = false; bool volatile m_busy = false;
}; };
} /* namespace f4ll */ } /* namespace f4ll */
#endif /* LL_MEMCPY_DMA_H_ */

View file

@ -15,7 +15,7 @@ namespace f4ll {
struct DMAINFO; struct DMAINFO;
class PacketUsart : public CrcHandler::ICallback, public usart_core class PacketUsart : public crc_handler::icallback, public usart_core
{ {
// friend class UsartCore; // friend class UsartCore;
public: public:
@ -56,9 +56,9 @@ public:
virtual bool PacketReceived(PacketUsart *caller, uintptr_t userParam, Packet const &packet) = 0; virtual bool PacketReceived(PacketUsart *caller, uintptr_t userParam, Packet const &packet) = 0;
}; };
// CRCHandler::ICallback interface functions // crc_handler::ICallback interface functions
virtual void CrcSucceeded(uintptr_t callbackParam, uint32_t crc, uint8_t task); virtual void crc_succeeded(uintptr_t callbackParam, uint32_t crc, uint8_t task);
virtual void CrcFailed(uintptr_t callbackParam, uint32_t crc, uint8_t task); virtual void crc_failed(uintptr_t callbackParam, uint32_t crc, uint8_t task);
void PostPacket(uint8_t const *payload, uint8_t length, bool waitForCrcQueue = true); void PostPacket(uint8_t const *payload, uint8_t length, bool waitForCrcQueue = true);
void SetupReceive(void); void SetupReceive(void);
@ -83,16 +83,16 @@ private:
void SwitchRxBuffers(void); void SwitchRxBuffers(void);
// UsartCore pure virtual function implementations // UsartCore pure virtual function implementations
virtual void ReceiverIdle(void); virtual void receiver_idle(void);
virtual void TransmissionComplete(void); virtual void transmission_complete(void);
virtual void FramingError(void); virtual void framing_error(void);
virtual void Overrun(void); virtual void overrun(void);
virtual void RxDmaTransferComplete(void); virtual void rx_dma_transfer_complete(void);
virtual void RxDmaHalfTransfer(void); virtual void rx_dma_half_transfer(void);
virtual void RxDmaError(dma_helper::DmaErrorType reason); virtual void rx_dma_error(dma_helper::dma_error_type reason);
virtual void TxDmaTransferComplete(void); virtual void tx_dma_transfer_complete(void);
virtual void TxDmaHalfTransfer(void); virtual void tx_dma_half_transfer(void);
virtual void TxDmaError(dma_helper::DmaErrorType reason); virtual void tx_dma_error(dma_helper::dma_error_type reason);
struct Buffer struct Buffer
{ {
@ -111,7 +111,7 @@ private:
Stats m_stats; Stats m_stats;
bool m_rxBufferSelector = false; bool m_rxBufferSelector = false;
CrcHandler::Slot<2> m_crcSlot; crc_handler::slot<2> m_crcSlot;
IHsUsartCallback *m_userCallback = nullptr; IHsUsartCallback *m_userCallback = nullptr;
uintptr_t m_userCallbackParam = 0; uintptr_t m_userCallbackParam = 0;
Buffer m_txBuffer; Buffer m_txBuffer;

View file

@ -16,37 +16,37 @@ namespace f4ll {
class usart_core class usart_core
{ {
public: public:
static inline void HandleUsartIrq(usart_core *_this) { _this->UsartIsr(); } static inline void usart_isr(usart_core *_this) { _this->usart_isr(); }
static inline void HandleRxDmaIrq(usart_core *_this) { _this->RxDmaIsr(); } static inline void rx_dma_isr(usart_core *_this) { _this->rx_dma_isr(); }
static inline void HandleTxDmaIrq(usart_core *_this) { _this->TxDmaIsr(); } static inline void tx_dma_isr(usart_core *_this) { _this->tx_dma_isr(); }
void SetupTransmit(void const *buffer, uint16_t length); void setup_transmit(void const *buffer, uint16_t length);
void SetupReceive(void *buffer, uint16_t length); void setup_receive(void *buffer, uint16_t length);
protected: protected:
usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx); usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx);
USART_TypeDef *m_usart; USART_TypeDef *m_usart;
dma_helper m_rxDma; dma_helper m_rx_dma;
dma_helper m_txDma; dma_helper m_tx_dma;
private: private:
virtual void ReceiverIdle(void) = 0; virtual void receiver_idle(void) = 0;
virtual void TransmissionComplete(void) = 0; virtual void transmission_complete(void) = 0;
virtual void FramingError(void) = 0; virtual void framing_error(void) = 0;
virtual void Overrun(void) = 0; virtual void overrun(void) = 0;
virtual void RxDmaTransferComplete(void) = 0; virtual void rx_dma_transfer_complete(void) = 0;
virtual void RxDmaHalfTransfer(void) = 0; virtual void rx_dma_half_transfer(void) = 0;
virtual void RxDmaError(dma_helper::DmaErrorType reason) = 0; virtual void rx_dma_error(dma_helper::dma_error_type reason) = 0;
virtual void TxDmaTransferComplete(void) = 0; virtual void tx_dma_transfer_complete(void) = 0;
virtual void TxDmaHalfTransfer(void) = 0; virtual void tx_dma_half_transfer(void) = 0;
virtual void TxDmaError(dma_helper::DmaErrorType reason) = 0; virtual void tx_dma_error(dma_helper::dma_error_type reason) = 0;
void UsartIsr(); void usart_isr();
void RxDmaIsr(); void rx_dma_isr();
void TxDmaIsr(); void tx_dma_isr();
}; };
} /* namespace f4ll */ } /* namespace f4ll */

View file

@ -15,32 +15,32 @@ console_handler::console_handler(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_
{ {
} }
void console_handler::ReceiverIdle(void) {} void console_handler::receiver_idle(void) {}
void console_handler::TransmissionComplete(void) {} void console_handler::transmission_complete(void) {}
void console_handler::FramingError(void) {} void console_handler::framing_error(void) {}
void console_handler::Overrun(void) {} void console_handler::overrun(void) {}
void console_handler::RxDmaTransferComplete(void) {} void console_handler::rx_dma_transfer_complete(void) {}
void console_handler::RxDmaHalfTransfer(void) {} void console_handler::rx_dma_half_transfer(void) {}
void console_handler::RxDmaError(dma_helper::DmaErrorType reason) void console_handler::rx_dma_error(dma_helper::dma_error_type reason)
{ {
(void)reason; (void)reason;
} }
void console_handler::TxDmaTransferComplete(void) void console_handler::tx_dma_transfer_complete(void)
{ {
LL_USART_EnableIT_TC(m_usart); LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_txDma.GetDma(), m_txDma.GetStream()); LL_DMA_DisableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
} }
void console_handler::TxDmaHalfTransfer(void) {} void console_handler::tx_dma_half_transfer(void) {}
void console_handler::TxDmaError(dma_helper::DmaErrorType reason) void console_handler::tx_dma_error(dma_helper::dma_error_type reason)
{ {
(void)reason; (void)reason;
} }
@ -73,7 +73,7 @@ void console_handler::PrintStats(uint8_t id, PacketUsart &usart)
ADDINFO(buffer, " pmp: ", stats.premature_payload); ADDINFO(buffer, " pmp: ", stats.premature_payload);
buffer += strcpy_ex(buffer, "\r\n"); buffer += strcpy_ex(buffer, "\r\n");
SetupTransmit(m_buffer, buffer - m_buffer + 1); setup_transmit(m_buffer, buffer - m_buffer + 1);
} }
} /* namespace f4ll */ } /* namespace f4ll */

View file

@ -1,5 +1,5 @@
/* /*
* ll_crchandler.cpp * ll_crc_handler.cpp
* *
* Created on: Oct 26, 2019 * Created on: Oct 26, 2019
* Author: compi * Author: compi
@ -8,151 +8,153 @@
namespace f4ll { namespace f4ll {
CrcHandler::CrcHandler(DMA_TypeDef *dma, uint32_t stream) : m_dma(dma, stream) { crc_handler::crc_handler(DMA_TypeDef *dma, uint32_t stream)
LL_DMA_EnableIT_TC(dma, stream); : m_dma(dma, stream)
LL_DMA_EnableIT_TE(dma, stream); {
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR); LL_DMA_EnableIT_TC(dma, stream);
LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR);
} }
void CrcHandler::AttachSlot(SlotBase &slot) { void crc_handler::attach_slot(slot_base &slot)
for (unsigned int i = 0; i < slot.m_taskCount; ++i) { {
auto &task(slot[i]); for (unsigned int i = 0; i < slot.m_task_count; ++i) {
task.m_address = nullptr; auto &task(slot[i]);
task.m_wordCount = 0; task.m_address = nullptr;
task.m_callback = nullptr; task.m_word_count = 0;
task.m_callbackParam = 0; task.m_callback = nullptr;
} task.m_callback_param = 0;
uint32_t prim = __get_PRIMASK();
__disable_irq();
slot.m_next = m_firstSlot;
m_firstSlot = &slot;
__set_PRIMASK(prim);
}
bool CrcHandler::Enqueue(SlotBase &slot, uint8_t task, void const *address,
uint16_t len, ICallback *cb, uintptr_t cbParam) {
uint32_t prim = __get_PRIMASK();
bool immediate;
// TODO: do we need sanity check here? (is slot attached, is task in range,
// etc...?)
while (IsActive(slot, task))
;
__disable_irq();
immediate = m_activeSlot == nullptr;
slot[task].m_address = (!immediate) ? address : nullptr;
slot[task].m_wordCount = (len + 3) / 4;
slot[task].m_callback = cb;
slot[task].m_callbackParam = cbParam;
if (immediate) {
m_activeSlot = &slot;
m_activeTask = task;
}
__set_PRIMASK(prim);
if (immediate) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.GetDma(), m_dma.GetStream(),
(uint32_t)address);
LL_DMA_SetDataLength(m_dma.GetDma(), m_dma.GetStream(), (len + 3) / 4);
LL_DMA_EnableStream(m_dma.GetDma(), m_dma.GetStream());
}
return immediate;
}
bool CrcHandler::IsActive(SlotBase &slot, uint8_t task) const {
return task < slot.m_taskCount && slot[task].m_wordCount != 0;
}
bool CrcHandler::IsQueued(SlotBase &slot, uint8_t task) const {
return task < slot.m_taskCount && slot[task].m_address != nullptr;
}
bool CrcHandler::IsRunning(SlotBase &slot, uint8_t task) const {
return task < slot.m_taskCount && slot[task].m_wordCount &&
!slot[task].m_address;
}
void CrcHandler::DmaTransferCompleted(void) {
if (*m_dma.GetIsReg() & m_dma.GetTcMask()) { // DMA transfer complete
*m_dma.GetIfcReg() = m_dma.GetTcMask();
LL_DMA_DisableStream(m_dma.GetDma(), m_dma.GetStream());
if (m_activeSlot) {
if ((*m_activeSlot)[m_activeTask].m_callback)
(*m_activeSlot)[m_activeTask].m_callback->CrcSucceeded(
(*m_activeSlot)[m_activeTask].m_callbackParam, CRC->DR,
m_activeTask);
else if ((*m_activeSlot)[m_activeTask].m_callbackParam)
*reinterpret_cast<uint32_t *>(
(*m_activeSlot)[m_activeTask].m_callbackParam) = CRC->DR;
} }
} else if (*m_dma.GetIsReg() & m_dma.GetTeMask()) { // DMA transfer error uint32_t prim = __get_PRIMASK();
*m_dma.GetIfcReg() = m_dma.GetTeMask(); __disable_irq();
LL_DMA_DisableStream(m_dma.GetDma(), m_dma.GetStream()); slot.m_next = m_first_slot;
if (m_activeSlot) { m_first_slot = &slot;
if ((*m_activeSlot)[m_activeTask].m_callback) __set_PRIMASK(prim);
(*m_activeSlot)[m_activeTask].m_callback->CrcFailed(
(*m_activeSlot)[m_activeTask].m_callbackParam, CRC->DR,
m_activeTask);
else if ((*m_activeSlot)[m_activeTask].m_callbackParam)
*reinterpret_cast<uint32_t *>(
(*m_activeSlot)[m_activeTask].m_callbackParam) = -1;
}
}
(*m_activeSlot)[m_activeTask].m_callback = nullptr;
(*m_activeSlot)[m_activeTask].m_callbackParam = 0;
(*m_activeSlot)[m_activeTask].m_wordCount = 0;
StartNextTask();
} }
void CrcHandler::StartNextTask(void) { bool crc_handler::enqueue(slot_base &slot, uint8_t task, void const *address, uint16_t len, icallback *cb, uintptr_t cbParam)
bool moreTasks; {
uint8_t index = 0; uint32_t prim = __get_PRIMASK();
bool immediate;
do { // TODO: do we need sanity check here? (is slot attached, is task in range,
SlotBase volatile *slot = m_firstSlot; // etc...?)
moreTasks = false;
while (slot) { while (is_active(slot, task))
if (index < slot->m_taskCount) { ;
if ((*slot)[index].m_address) { __disable_irq();
m_activeSlot = slot; immediate = m_active_slot == nullptr;
m_activeTask = index; slot[task].m_address = (!immediate) ? address : nullptr;
CRC->CR = 1; slot[task].m_word_count = (len + 3) / 4;
LL_DMA_SetM2MSrcAddress( slot[task].m_callback = cb;
m_dma.GetDma(), m_dma.GetStream(), slot[task].m_callback_param = cbParam;
reinterpret_cast<uint32_t>((*slot)[index].m_address)); if (immediate) {
LL_DMA_SetDataLength(m_dma.GetDma(), m_dma.GetStream(), m_active_slot = &slot;
(*slot)[index].m_wordCount); m_activeTask = task;
LL_DMA_EnableStream(m_dma.GetDma(), m_dma.GetStream()); }
(*slot)[index].m_address = nullptr; // marking as started __set_PRIMASK(prim);
return;
if (immediate) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.get_dma(), m_dma.get_stream(), (uint32_t)address);
LL_DMA_SetDataLength(m_dma.get_dma(), m_dma.get_stream(), (len + 3) / 4);
LL_DMA_EnableStream(m_dma.get_dma(), m_dma.get_stream());
}
return immediate;
}
bool crc_handler::is_active(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_word_count != 0;
}
bool crc_handler::is_queued(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_address != nullptr;
}
bool crc_handler::is_running(slot_base &slot, uint8_t task) const
{
return task < slot.m_task_count && slot[task].m_word_count && !slot[task].m_address;
}
void crc_handler::dma_transfer_completed(void)
{
if (*m_dma.get_is_reg() & m_dma.get_tc_mask()) { // DMA transfer complete
*m_dma.get_ifc_reg() = m_dma.get_tc_mask();
LL_DMA_DisableStream(m_dma.get_dma(), m_dma.get_stream());
if (m_active_slot) {
if ((*m_active_slot)[m_activeTask].m_callback) {
(*m_active_slot)[m_activeTask].m_callback->crc_succeeded(
(*m_active_slot)[m_activeTask].m_callback_param, CRC->DR, m_activeTask);
} else if ((*m_active_slot)[m_activeTask].m_callback_param) {
*reinterpret_cast<uint32_t *>((*m_active_slot)[m_activeTask].m_callback_param) = CRC->DR;
}
}
} else if (*m_dma.get_is_reg() & m_dma.get_te_mask()) { // DMA transfer error
*m_dma.get_ifc_reg() = m_dma.get_te_mask();
LL_DMA_DisableStream(m_dma.get_dma(), m_dma.get_stream());
if (m_active_slot) {
if ((*m_active_slot)[m_activeTask].m_callback) {
(*m_active_slot)[m_activeTask].m_callback->crc_failed(
(*m_active_slot)[m_activeTask].m_callback_param, CRC->DR, m_activeTask);
} else if ((*m_active_slot)[m_activeTask].m_callback_param) {
*reinterpret_cast<uint32_t *>((*m_active_slot)[m_activeTask].m_callback_param) = -1;
}
} }
if (index + 1 < slot->m_taskCount)
moreTasks = true;
}
slot = slot->m_next;
} }
++index; (*m_active_slot)[m_activeTask].m_callback = nullptr;
} while (moreTasks); (*m_active_slot)[m_activeTask].m_callback_param = 0;
m_activeSlot = nullptr; (*m_active_slot)[m_activeTask].m_word_count = 0;
start_next_task();
} }
void CrcHandler::WaitResults(SlotBase &slot, uint8_t task) const { void crc_handler::start_next_task(void)
while (IsQueued(slot, task)) {
; bool moreTasks;
while (IsActive(slot, task)) uint8_t index = 0;
;
do {
slot_base volatile *slot = m_first_slot;
moreTasks = false;
while (slot) {
if (index < slot->m_task_count) {
if ((*slot)[index].m_address) {
m_active_slot = slot;
m_activeTask = index;
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.get_dma(), m_dma.get_stream(), reinterpret_cast<uint32_t>((*slot)[index].m_address));
LL_DMA_SetDataLength(m_dma.get_dma(), m_dma.get_stream(), (*slot)[index].m_word_count);
LL_DMA_EnableStream(m_dma.get_dma(), m_dma.get_stream());
(*slot)[index].m_address = nullptr; // marking as started
return;
}
if (index + 1 < slot->m_task_count) {
moreTasks = true;
}
}
slot = slot->m_next;
}
++index;
} while (moreTasks);
m_active_slot = nullptr;
} }
uint32_t CrcHandler::Compute(SlotBase &slot, uint8_t task, void const *address, void crc_handler::wait_results(slot_base &slot, uint8_t task) const
uint16_t len) { {
uint32_t result; while (is_queued(slot, task))
Enqueue(slot, task, address, len, nullptr, ;
reinterpret_cast<uintptr_t>(&result)); while (is_active(slot, task))
while (IsActive(slot, task)) ;
; }
return result;
uint32_t crc_handler::compute(slot_base &slot, uint8_t task, void const *address, uint16_t len)
{
uint32_t result;
enqueue(slot, task, address, len, nullptr, reinterpret_cast<uintptr_t>(&result));
while (is_active(slot, task))
;
return result;
} }
} // namespace f4ll } // namespace f4ll

View file

@ -9,24 +9,24 @@ q * ll_dmahelper.cpp
namespace f4ll { namespace f4ll {
const uint32_t dma_helper::m_FEMasks[8] = {DMA_LISR_FEIF0, DMA_LISR_FEIF1, DMA_LISR_FEIF2, DMA_LISR_FEIF3, const uint32_t dma_helper::m_fe_masks[8] = {DMA_LISR_FEIF0, DMA_LISR_FEIF1, DMA_LISR_FEIF2, DMA_LISR_FEIF3,
DMA_HISR_FEIF4, DMA_HISR_FEIF5, DMA_HISR_FEIF6, DMA_HISR_FEIF7}; DMA_HISR_FEIF4, DMA_HISR_FEIF5, DMA_HISR_FEIF6, DMA_HISR_FEIF7};
const uint32_t dma_helper::m_DMEMasks[8] = {DMA_LISR_DMEIF0, DMA_LISR_DMEIF1, DMA_LISR_DMEIF2, DMA_LISR_DMEIF3, const uint32_t dma_helper::m_dme_masks[8] = {DMA_LISR_DMEIF0, DMA_LISR_DMEIF1, DMA_LISR_DMEIF2, DMA_LISR_DMEIF3,
DMA_HISR_DMEIF4, DMA_HISR_DMEIF5, DMA_HISR_DMEIF6, DMA_HISR_DMEIF7}; DMA_HISR_DMEIF4, DMA_HISR_DMEIF5, DMA_HISR_DMEIF6, DMA_HISR_DMEIF7};
const uint32_t dma_helper::m_TEMasks[8] = {DMA_LISR_TEIF0, DMA_LISR_TEIF1, DMA_LISR_TEIF2, DMA_LISR_TEIF3, const uint32_t dma_helper::m_te_masks[8] = {DMA_LISR_TEIF0, DMA_LISR_TEIF1, DMA_LISR_TEIF2, DMA_LISR_TEIF3,
DMA_HISR_TEIF4, DMA_HISR_TEIF5, DMA_HISR_TEIF6, DMA_HISR_TEIF7}; DMA_HISR_TEIF4, DMA_HISR_TEIF5, DMA_HISR_TEIF6, DMA_HISR_TEIF7};
const uint32_t dma_helper::m_HTMasks[8] = {DMA_LISR_HTIF0, DMA_LISR_HTIF1, DMA_LISR_HTIF2, DMA_LISR_HTIF3, const uint32_t dma_helper::m_ht_masks[8] = {DMA_LISR_HTIF0, DMA_LISR_HTIF1, DMA_LISR_HTIF2, DMA_LISR_HTIF3,
DMA_HISR_HTIF4, DMA_HISR_HTIF5, DMA_HISR_HTIF6, DMA_HISR_HTIF7}; DMA_HISR_HTIF4, DMA_HISR_HTIF5, DMA_HISR_HTIF6, DMA_HISR_HTIF7};
const uint32_t dma_helper::m_TCMasks[8] = {DMA_LISR_TCIF0, DMA_LISR_TCIF1, DMA_LISR_TCIF2, DMA_LISR_TCIF3, const uint32_t dma_helper::m_tc_masks[8] = {DMA_LISR_TCIF0, DMA_LISR_TCIF1, DMA_LISR_TCIF2, DMA_LISR_TCIF3,
DMA_HISR_TCIF4, DMA_HISR_TCIF5, DMA_HISR_TCIF6, DMA_HISR_TCIF7}; DMA_HISR_TCIF4, DMA_HISR_TCIF5, DMA_HISR_TCIF6, DMA_HISR_TCIF7};
dma_helper::dma_helper(DMA_TypeDef *dma, uint32_t stream) dma_helper::dma_helper(DMA_TypeDef *dma, uint32_t stream)
: m_dma(dma), : m_dma(dma),
m_stream(stream), m_stream(stream),
m_isReg( m_is_reg(
(dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LISR : &DMA1->HISR) (dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LISR : &DMA1->HISR)
: ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LISR : &DMA2->HISR)), : ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LISR : &DMA2->HISR)),
m_ifcReg( m_ifc_reg(
(dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LIFCR : &DMA1->HIFCR) (dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LIFCR : &DMA1->HIFCR)
: ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LIFCR : &DMA2->HIFCR)) : ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LIFCR : &DMA2->HIFCR))
{ {

View file

@ -9,29 +9,29 @@
namespace f4ll { namespace f4ll {
MemcpyDma::MemcpyDma(DMA_TypeDef *dma, uint32_t stream) memcpy_dma::memcpy_dma(DMA_TypeDef *dma, uint32_t stream)
: dma_helper(dma, stream) : dma_helper(dma, stream)
{ {
LL_DMA_EnableIT_TC(dma, stream); LL_DMA_EnableIT_TC(dma, stream);
} }
void *MemcpyDma::Copy(void *dst, void const *src, uint16_t length) void *memcpy_dma::copy(void *dst, void const *src, uint16_t length)
{ {
LL_DMA_SetM2MSrcAddress(GetDma(), GetStream(), (uint32_t)src); LL_DMA_SetM2MSrcAddress(get_dma(), get_stream(), (uint32_t)src);
LL_DMA_SetM2MDstAddress(GetDma(), GetStream(), (uint32_t)dst); LL_DMA_SetM2MDstAddress(get_dma(), get_stream(), (uint32_t)dst);
LL_DMA_SetDataLength(GetDma(), GetStream(), (length + 3) / 4); LL_DMA_SetDataLength(get_dma(), get_stream(), (length + 3) / 4);
m_busy = 1; m_busy = 1;
LL_DMA_EnableStream(GetDma(), GetStream()); LL_DMA_EnableStream(get_dma(), get_stream());
while (m_busy) while (m_busy)
; ;
return dst; return dst;
} }
void MemcpyDma::DmaTransferCompleted() void memcpy_dma::dma_transfer_completed()
{ {
if (*GetIsReg() & GetTcMask()) { // DMA transfer complete if (*get_is_reg() & get_tc_mask()) { // DMA transfer complete
*GetIfcReg() = GetTcMask(); *get_ifc_reg() = get_tc_mask();
LL_DMA_DisableStream(GetDma(), GetStream()); LL_DMA_DisableStream(get_dma(), get_stream());
m_busy = 0; m_busy = 0;
} }
} }

View file

@ -17,7 +17,7 @@ template <typename T> static inline T RoundUpTo4(T input)
PacketUsart::PacketUsart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx) PacketUsart::PacketUsart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: usart_core(usart, dma, streamRx, streamTx) : usart_core(usart, dma, streamRx, streamTx)
{ {
CrcHandler::instance().AttachSlot(m_crcSlot); crc_handler::instance().attach_slot(m_crcSlot);
LL_USART_EnableIT_IDLE(usart); LL_USART_EnableIT_IDLE(usart);
LL_USART_EnableIT_ERROR(usart); LL_USART_EnableIT_ERROR(usart);
} }
@ -46,14 +46,14 @@ void PacketUsart::PostPacket(uint8_t const *payload, uint8_t length, bool waitFo
m_txBuffer.busy = true; m_txBuffer.busy = true;
m_txBuffer.error = false; m_txBuffer.error = false;
CrcHandler::instance().Enqueue( crc_handler::instance().enqueue(
m_crcSlot, 0, &m_txBuffer.packet, sizeof(PacketHeader) + payloadLength, nullptr, m_crcSlot, 0, &m_txBuffer.packet, sizeof(PacketHeader) + payloadLength, nullptr,
reinterpret_cast<uintptr_t>(m_txBuffer.packet.payload + payloadLength)); reinterpret_cast<uintptr_t>(m_txBuffer.packet.payload + payloadLength));
while (waitForCrcQueue && CrcHandler::instance().IsQueued(m_crcSlot, 0)) while (waitForCrcQueue && crc_handler::instance().is_queued(m_crcSlot, 0))
; ;
SetupTransmit(&m_txBuffer.packet, m_txBuffer.requestedLength); setup_transmit(&m_txBuffer.packet, m_txBuffer.requestedLength);
++m_stats.sent; ++m_stats.sent;
} }
@ -61,49 +61,49 @@ void PacketUsart::PostPacket(uint8_t const *payload, uint8_t length, bool waitFo
void PacketUsart::SetupReceive() void PacketUsart::SetupReceive()
{ {
m_rxBuffers[m_rxBufferSelector].requestedLength = sizeof(m_rxBuffers[m_rxBufferSelector].packet); m_rxBuffers[m_rxBufferSelector].requestedLength = sizeof(m_rxBuffers[m_rxBufferSelector].packet);
usart_core::SetupReceive(&m_rxBuffers[m_rxBufferSelector], sizeof(m_rxBuffers[m_rxBufferSelector].packet)); usart_core::setup_receive(&m_rxBuffers[m_rxBufferSelector], sizeof(m_rxBuffers[m_rxBufferSelector].packet));
} }
////////////////////////////////////// //////////////////////////////////////
// UsartCore pure virtual functions // // UsartCore pure virtual functions //
////////////////////////////////////// //////////////////////////////////////
void PacketUsart::ReceiverIdle(void) void PacketUsart::receiver_idle(void)
{ {
uint16_t rcvdLen = m_rxBuffers[m_rxBufferSelector].requestedLength - LL_DMA_GetDataLength(m_rxDma.GetDma(), m_rxDma.GetStream()); uint16_t rcvdLen = m_rxBuffers[m_rxBufferSelector].requestedLength - LL_DMA_GetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream());
if (rcvdLen >= sizeof(PacketHeader)) { if (rcvdLen >= sizeof(PacketHeader)) {
if (CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header)) { if (CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header)) {
if (rcvdLen >= sizeof(PacketHeader) + RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength) + if (rcvdLen >= sizeof(PacketHeader) + RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength) +
sizeof(uint32_t)) { sizeof(uint32_t)) {
LL_DMA_DisableStream(m_rxDma.GetDma(), m_rxDma.GetStream()); LL_DMA_DisableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
} else { } else {
++m_stats.premature_payload; ++m_stats.premature_payload;
} }
} else { } else {
m_rxBuffers[m_rxBufferSelector].error = 1; m_rxBuffers[m_rxBufferSelector].error = 1;
LL_DMA_DisableStream(m_rxDma.GetDma(), m_rxDma.GetStream()); LL_DMA_DisableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
} }
} else { } else {
++m_stats.premature_hdr; ++m_stats.premature_hdr;
} }
} }
void PacketUsart::TransmissionComplete(void) void PacketUsart::transmission_complete(void)
{ {
LL_USART_DisableDirectionTx(m_usart); // enforcing an idle frame LL_USART_DisableDirectionTx(m_usart); // enforcing an idle frame
LL_USART_EnableDirectionTx(m_usart); LL_USART_EnableDirectionTx(m_usart);
m_txBuffer.busy = 0; m_txBuffer.busy = 0;
} }
void PacketUsart::FramingError(void) {} void PacketUsart::framing_error(void) {}
void PacketUsart::Overrun(void) {} void PacketUsart::overrun(void) {}
void PacketUsart::RxDmaTransferComplete(void) void PacketUsart::rx_dma_transfer_complete(void)
{ {
if (CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header)) { if (CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header)) {
CrcHandler::instance().Enqueue( crc_handler::instance().enqueue(
m_crcSlot, 1, &m_rxBuffers[m_rxBufferSelector].packet, m_crcSlot, 1, &m_rxBuffers[m_rxBufferSelector].packet,
sizeof(PacketHeader) + RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength), this, sizeof(PacketHeader) + RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength), this,
m_rxBufferSelector); m_rxBufferSelector);
@ -114,9 +114,9 @@ void PacketUsart::RxDmaTransferComplete(void)
SwitchRxBuffers(); SwitchRxBuffers();
} }
void PacketUsart::RxDmaHalfTransfer(void) {} void PacketUsart::rx_dma_half_transfer(void) {}
void PacketUsart::RxDmaError(dma_helper::DmaErrorType reason) void PacketUsart::rx_dma_error(dma_helper::dma_error_type reason)
{ {
(void)reason; (void)reason;
@ -125,15 +125,15 @@ void PacketUsart::RxDmaError(dma_helper::DmaErrorType reason)
SwitchRxBuffers(); SwitchRxBuffers();
} }
void PacketUsart::TxDmaTransferComplete(void) void PacketUsart::tx_dma_transfer_complete(void)
{ {
LL_USART_EnableIT_TC(m_usart); LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_txDma.GetDma(), m_txDma.GetStream()); LL_DMA_DisableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
} }
void PacketUsart::TxDmaHalfTransfer(void) {} void PacketUsart::tx_dma_half_transfer(void) {}
void PacketUsart::TxDmaError(dma_helper::DmaErrorType reason) void PacketUsart::tx_dma_error(dma_helper::dma_error_type reason)
{ {
(void)reason; (void)reason;
@ -174,10 +174,10 @@ void PacketUsart::SwitchRxBuffers(void)
} }
/////////////////////////// ///////////////////////////
// CrcHandler::ICallback // // crc_handler::ICallback //
/////////////////////////// ///////////////////////////
void PacketUsart::CrcSucceeded(uintptr_t callbackParam, uint32_t crc, uint8_t task) void PacketUsart::crc_succeeded(uintptr_t callbackParam, uint32_t crc, uint8_t task)
{ {
(void)task; (void)task;
@ -194,7 +194,7 @@ void PacketUsart::CrcSucceeded(uintptr_t callbackParam, uint32_t crc, uint8_t ta
} }
} }
void PacketUsart::CrcFailed(uintptr_t callbackParam, uint32_t crc, uint8_t task) void PacketUsart::crc_failed(uintptr_t callbackParam, uint32_t crc, uint8_t task)
{ {
(void)crc; (void)crc;
(void)task; (void)task;

View file

@ -11,16 +11,18 @@ namespace f4ll {
usart_core::usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx) usart_core::usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: m_usart(usart), : m_usart(usart),
m_rxDma(dma, streamRx), m_rx_dma(dma, streamRx),
m_txDma(dma, streamTx) m_tx_dma(dma, streamTx)
{ {
uint32_t status = usart->SR; uint32_t status = usart->SR;
volatile uint32_t tmpreg = usart->DR; // clearing some of the error/status bits in the USART volatile uint32_t tmpreg = usart->DR; // clearing some of the error/status bits in the USART
(void)tmpreg; (void)tmpreg;
(void)status; (void)status;
*m_txDma.GetIfcReg() = m_txDma.GetTcMask() | m_rxDma.GetHtMask() | m_txDma.GetTeMask() | m_rxDma.GetFeMask() | m_rxDma.GetDmeMask(); *m_tx_dma.get_ifc_reg() =
*m_rxDma.GetIfcReg() = m_rxDma.GetTcMask() | m_rxDma.GetHtMask() | m_rxDma.GetTeMask() | m_rxDma.GetFeMask() | m_rxDma.GetDmeMask(); m_tx_dma.get_tc_mask() | m_rx_dma.get_ht_mask() | m_tx_dma.get_te_mask() | m_rx_dma.get_fe_mask() | m_rx_dma.get_dme_mask();
*m_rx_dma.get_ifc_reg() =
m_rx_dma.get_tc_mask() | m_rx_dma.get_ht_mask() | m_rx_dma.get_te_mask() | m_rx_dma.get_fe_mask() | m_rx_dma.get_dme_mask();
LL_DMA_EnableIT_TC(dma, streamRx); LL_DMA_EnableIT_TC(dma, streamRx);
LL_DMA_EnableIT_TE(dma, streamRx); LL_DMA_EnableIT_TE(dma, streamRx);
@ -28,7 +30,7 @@ usart_core::usart_core(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx
LL_DMA_EnableIT_TE(dma, streamTx); LL_DMA_EnableIT_TE(dma, streamTx);
} }
void usart_core::UsartIsr() void usart_core::usart_isr()
{ {
uint32_t status = m_usart->SR; uint32_t status = m_usart->SR;
volatile uint32_t tmpreg = m_usart->DR; // clearing some of the error/status bits in the HW volatile uint32_t tmpreg = m_usart->DR; // clearing some of the error/status bits in the HW
@ -36,108 +38,108 @@ void usart_core::UsartIsr()
if (LL_USART_IsEnabledIT_TC(m_usart) && LL_USART_IsActiveFlag_TC(m_usart)) { // transmission complete if (LL_USART_IsEnabledIT_TC(m_usart) && LL_USART_IsActiveFlag_TC(m_usart)) { // transmission complete
LL_USART_DisableIT_TC(m_usart); LL_USART_DisableIT_TC(m_usart);
TransmissionComplete(); transmission_complete();
} }
if (LL_USART_IsEnabledIT_IDLE(m_usart) && (status & USART_SR_IDLE)) { if (LL_USART_IsEnabledIT_IDLE(m_usart) && (status & USART_SR_IDLE)) {
ReceiverIdle(); receiver_idle();
} }
if (LL_USART_IsEnabledIT_ERROR(m_usart)) { if (LL_USART_IsEnabledIT_ERROR(m_usart)) {
if (status & USART_SR_FE) { if (status & USART_SR_FE) {
FramingError(); framing_error();
} }
if (status & USART_SR_ORE) { if (status & USART_SR_ORE) {
Overrun(); overrun();
} }
} }
} }
void usart_core::RxDmaIsr() void usart_core::rx_dma_isr()
{ {
if (*m_rxDma.GetIsReg() & m_rxDma.GetTcMask()) { if (*m_rx_dma.get_is_reg() & m_rx_dma.get_tc_mask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetTcMask(); *m_rx_dma.get_ifc_reg() = m_rx_dma.get_tc_mask();
if (m_rxDma.IsEnabledIt_TC()) { if (m_rx_dma.is_enabled_it_tc()) {
RxDmaTransferComplete(); rx_dma_transfer_complete();
} }
} }
if (*m_rxDma.GetIsReg() & m_rxDma.GetHtMask()) { if (*m_rx_dma.get_is_reg() & m_rx_dma.get_ht_mask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetHtMask(); *m_rx_dma.get_ifc_reg() = m_rx_dma.get_ht_mask();
if (m_rxDma.IsEnabledIt_HT()) { if (m_rx_dma.is_enabled_it_ht()) {
RxDmaHalfTransfer(); rx_dma_half_transfer();
} }
} }
if (*m_rxDma.GetIsReg() & m_rxDma.GetTeMask()) { if (*m_rx_dma.get_is_reg() & m_rx_dma.get_te_mask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetTeMask(); *m_rx_dma.get_ifc_reg() = m_rx_dma.get_te_mask();
if (m_rxDma.IsEnabledIt_TE()) { if (m_rx_dma.is_enabled_it_te()) {
RxDmaError(dma_helper::DmaErrorType::Transfer); rx_dma_error(dma_helper::dma_error_type::transfer);
} }
} }
if (*m_rxDma.GetIsReg() & m_rxDma.GetFeMask()) { if (*m_rx_dma.get_is_reg() & m_rx_dma.get_fe_mask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetFeMask(); *m_rx_dma.get_ifc_reg() = m_rx_dma.get_fe_mask();
if (m_rxDma.IsEnabledIt_FE()) { if (m_rx_dma.is_enabled_it_fe()) {
RxDmaError(dma_helper::DmaErrorType::Fifo); rx_dma_error(dma_helper::dma_error_type::fifo);
} }
} }
if (*m_rxDma.GetIsReg() & m_rxDma.GetDmeMask()) { if (*m_rx_dma.get_is_reg() & m_rx_dma.get_dme_mask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetDmeMask(); *m_rx_dma.get_ifc_reg() = m_rx_dma.get_dme_mask();
if (m_rxDma.IsEnabledIt_DME()) { if (m_rx_dma.is_enabled_it_dme()) {
RxDmaError(dma_helper::DmaErrorType::DirectMode); rx_dma_error(dma_helper::dma_error_type::direct_mode);
} }
} }
} }
void usart_core::TxDmaIsr() void usart_core::tx_dma_isr()
{ {
if (*m_txDma.GetIsReg() & m_txDma.GetTcMask()) { // DMA transfer complete if (*m_tx_dma.get_is_reg() & m_tx_dma.get_tc_mask()) { // DMA transfer complete
*m_txDma.GetIfcReg() = m_txDma.GetTcMask(); *m_tx_dma.get_ifc_reg() = m_tx_dma.get_tc_mask();
if (m_txDma.IsEnabledIt_TC()) { if (m_tx_dma.is_enabled_it_tc()) {
TxDmaTransferComplete(); tx_dma_transfer_complete();
} }
} }
if (*m_txDma.GetIsReg() & m_txDma.GetHtMask()) { if (*m_tx_dma.get_is_reg() & m_tx_dma.get_ht_mask()) {
*m_txDma.GetIfcReg() = m_txDma.GetHtMask(); *m_tx_dma.get_ifc_reg() = m_tx_dma.get_ht_mask();
if (m_txDma.IsEnabledIt_HT()) { if (m_tx_dma.is_enabled_it_ht()) {
TxDmaHalfTransfer(); tx_dma_half_transfer();
} }
} }
if (*m_txDma.GetIsReg() & m_txDma.GetTeMask()) { if (*m_tx_dma.get_is_reg() & m_tx_dma.get_te_mask()) {
*m_txDma.GetIfcReg() = m_txDma.GetTeMask(); *m_tx_dma.get_ifc_reg() = m_tx_dma.get_te_mask();
if (m_txDma.IsEnabledIt_TE()) { if (m_tx_dma.is_enabled_it_te()) {
TxDmaError(dma_helper::DmaErrorType::Transfer); tx_dma_error(dma_helper::dma_error_type::transfer);
} }
} }
if (*m_txDma.GetIsReg() & m_txDma.GetFeMask()) { if (*m_tx_dma.get_is_reg() & m_tx_dma.get_fe_mask()) {
*m_txDma.GetIfcReg() = m_txDma.GetFeMask(); *m_tx_dma.get_ifc_reg() = m_tx_dma.get_fe_mask();
if (m_txDma.IsEnabledIt_FE()) { if (m_tx_dma.is_enabled_it_fe()) {
TxDmaError(dma_helper::DmaErrorType::Fifo); tx_dma_error(dma_helper::dma_error_type::fifo);
} }
} }
if (*m_txDma.GetIsReg() & m_txDma.GetDmeMask()) { if (*m_tx_dma.get_is_reg() & m_tx_dma.get_dme_mask()) {
*m_txDma.GetIfcReg() = m_txDma.GetDmeMask(); *m_tx_dma.get_ifc_reg() = m_tx_dma.get_dme_mask();
if (m_txDma.IsEnabledIt_DME()) { if (m_tx_dma.is_enabled_it_dme()) {
TxDmaError(dma_helper::DmaErrorType::DirectMode); tx_dma_error(dma_helper::dma_error_type::direct_mode);
} }
} }
} }
void usart_core::SetupTransmit(void const *buffer, uint16_t length) void usart_core::setup_transmit(void const *buffer, uint16_t length)
{ {
LL_DMA_ConfigAddresses( LL_DMA_ConfigAddresses(
m_txDma.GetDma(), m_txDma.GetStream(), reinterpret_cast<uint32_t>(buffer), LL_USART_DMA_GetRegAddr(m_usart), m_tx_dma.get_dma(), m_tx_dma.get_stream(), reinterpret_cast<uint32_t>(buffer), LL_USART_DMA_GetRegAddr(m_usart),
LL_DMA_DIRECTION_MEMORY_TO_PERIPH); LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetDataLength(m_txDma.GetDma(), m_txDma.GetStream(), length); LL_DMA_SetDataLength(m_tx_dma.get_dma(), m_tx_dma.get_stream(), length);
LL_USART_EnableDMAReq_TX(m_usart); LL_USART_EnableDMAReq_TX(m_usart);
LL_DMA_EnableStream(m_txDma.GetDma(), m_txDma.GetStream()); LL_DMA_EnableStream(m_tx_dma.get_dma(), m_tx_dma.get_stream());
} }
void usart_core::SetupReceive(void *buffer, uint16_t length) void usart_core::setup_receive(void *buffer, uint16_t length)
{ {
LL_DMA_ConfigAddresses( LL_DMA_ConfigAddresses(
m_rxDma.GetDma(), m_rxDma.GetStream(), LL_USART_DMA_GetRegAddr(m_usart), reinterpret_cast<uint32_t>(buffer), m_rx_dma.get_dma(), m_rx_dma.get_stream(), LL_USART_DMA_GetRegAddr(m_usart), reinterpret_cast<uint32_t>(buffer),
LL_DMA_DIRECTION_PERIPH_TO_MEMORY); LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetDataLength(m_rxDma.GetDma(), m_rxDma.GetStream(), length); LL_DMA_SetDataLength(m_rx_dma.get_dma(), m_rx_dma.get_stream(), length);
LL_USART_EnableDMAReq_RX(m_usart); LL_USART_EnableDMAReq_RX(m_usart);
LL_USART_ClearFlag_ORE(m_usart); LL_USART_ClearFlag_ORE(m_usart);
LL_DMA_EnableStream(m_rxDma.GetDma(), m_rxDma.GetStream()); LL_DMA_EnableStream(m_rx_dma.get_dma(), m_rx_dma.get_stream());
} }
} /* namespace f4ll */ } /* namespace f4ll */