Reorganizing project

This commit is contained in:
Attila Body 2019-11-08 11:47:49 +01:00
parent 2d6567b1b2
commit 76ba80db36
51 changed files with 139 additions and 266 deletions

View file

@ -0,0 +1,11 @@
#encoder
SELF_DIR := $(abspath $(dir $(lastword $(MAKEFILE_LIST))))
REL_DIR := $(patsubst %/,%,$(dir $(lastword $(MAKEFILE_LIST))))
ifeq ($(MKDBG), 1)
$(info >>> $(REL_DIR)/component.mk)
endif
$(eval C_INCLUDES += -I$(REL_DIR)/inc)
$(eval CXX_SOURCES += $(wildcard $(REL_DIR)/src/*.cpp))
ifeq ($(MKDBG), 1)
$(info <<<)
endif

1
components/f4ll/inc/f4ll Symbolic link
View file

@ -0,0 +1 @@
.

View file

@ -0,0 +1,43 @@
/*
* ll_consolehandler.h
*
* Created on: Nov 7, 2019
* Author: abody
*/
#ifndef LL_CONSOLEHANDLER_H_
#define LL_CONSOLEHANDLER_H_
#include "f4ll/ll_hsusart.h"
#include "singleton.h"
namespace f4ll {
class LL_ConsoleHandler: public LL_UsartCore, public Singleton<LL_ConsoleHandler>
{
friend class Singleton<LL_ConsoleHandler>;
public:
// LL_UsartCore pure virtual function implementations
virtual void ReceiverIdle(void);
virtual void TransmissionComplete(void);
virtual void RxDmaTransferComplete(void);
virtual void RxDmaHalfTransfer(void);
virtual void RxDmaError(LL_DmaHelper::DmaErrorType reason);
virtual void TxDmaTransferComplete(void);
virtual void TxDmaHalfTransfer(void);
virtual void TxDmaError(LL_DmaHelper::DmaErrorType reason);
void PrintStats(uint8_t id, LL_HsUsart &usart);
private:
LL_ConsoleHandler(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx);
char m_buffer[128];
uint16_t m_used = 0;
};
} /* namespace f4ll */
#endif /* LL_CONSOLEHANDLER_H_ */

View file

@ -0,0 +1,89 @@
/*
* ll_crchandler.h
*
* Created on: Oct 26, 2019
* Author: compi
*/
#ifndef LL_CRCHANDLER_H_
#define LL_CRCHANDLER_H_
#include <inttypes.h>
#include <platform/dma_ll.h>
#include "f4ll/ll_dmahelper.h"
#include "singleton.h"
extern "C" void _HandleCrcDmaIrq(void);
namespace f4ll {
class LL_CrcHandler : public Singleton<LL_CrcHandler>
{
friend class Singleton<LL_CrcHandler>;
public:
struct ICallback
{
virtual void CrcSucceeded(uintptr_t callbackParam, uint32_t crc, int prio) = 0;
virtual void CrcFailed(uintptr_t callbackParam, uint32_t crc, int prio) = 0;
};
class SlotBase
{
friend class LL_CrcHandler;
public:
struct CrcTask {
void const * volatile m_address; // changed to nullptr when execution starts
uint16_t volatile m_wordCount;
LL_CrcHandler::ICallback *m_callback;
uintptr_t m_callbackParam;
};
private:
SlotBase *m_next = nullptr;
uint8_t m_taskCount;
virtual CrcTask& operator[](int index) = 0;
protected:
SlotBase(unsigned int taskCount) : m_taskCount(taskCount) {}
SlotBase() = delete;
SlotBase(SlotBase const &other) = delete;
};
// DON't try this at home! we "extend" LL_CrcHandler::m_tasks this way
template <uint8_t n> class Slot : public SlotBase
{
public:
Slot() : SlotBase(n) {}
virtual CrcTask& operator[](int index) { return m_tasks[index]; }
private:
Slot::CrcTask m_tasks[n];
};
void AttachSlot(SlotBase &slot);
bool Enqueue(SlotBase &slot, uint8_t prio, void const *address, uint16_t len, ICallback *cb, uintptr_t cbParam);
uint32_t Compute(SlotBase &slot, uint8_t prio, void const *address, uint16_t len);
bool IsActive(SlotBase &slot, uint8_t prio) const;
bool IsQueued(SlotBase &slot, uint8_t prio) const;
bool IsRunning(SlotBase &slot, uint8_t prio) const;
void DmaTransferCompleted(void);
private:
LL_CrcHandler(DMA_TypeDef *dma, uint32_t stream);
friend void ::_HandleCrcDmaIrq(void);
void StartNextTask(void);
void WaitResults(SlotBase &slot, uint8_t prio) const;
LL_DmaHelper m_dma;
SlotBase * volatile m_firstSlot = nullptr;
SlotBase * volatile m_activeSlot = nullptr;
int volatile m_activePrio;
};
} // namespace f4ll
#endif /* LL_CRCHANDLER_H_ */

View file

@ -0,0 +1,58 @@
/*
* ll_dmahelper.h
*
* Created on: Oct 25, 2019
* Author: abody
*/
#ifndef LL_DMAHELPER_H_
#define LL_DMAHELPER_H_
#include <inttypes.h>
#include <platform/dma_ll.h>
namespace f4ll {
class LL_DmaHelper {
public:
LL_DmaHelper(DMA_TypeDef *dma, uint32_t stream);
LL_DmaHelper(LL_DmaHelper const &base) = default;
inline DMA_TypeDef* GetDma() const { return m_dma; }
inline uint32_t GetStream() const { return m_stream; }
inline volatile uint32_t* GetIsReg() const { return m_isReg; }
inline volatile uint32_t* GetIfcReg() const { return m_ifcReg; }
inline uint32_t GetFeMask() const { return m_FEMasks[m_stream]; }
inline uint32_t GetDmeMask() const { return m_DMEMasks[m_stream]; }
inline uint32_t GetTeMask() const { return m_TEMasks[m_stream]; }
inline uint32_t GetHtMask() const { return m_HTMasks[m_stream]; }
inline uint32_t GetTcMask() const { return m_TCMasks[m_stream]; }
inline bool IsEnabledIt_HT() { return LL_DMA_IsEnabledIT_HT(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_TE() { return LL_DMA_IsEnabledIT_TE(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_TC() { return LL_DMA_IsEnabledIT_TC(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_DME() { return LL_DMA_IsEnabledIT_DME(m_dma, m_stream) != 0; }
inline bool IsEnabledIt_FE() { return LL_DMA_IsEnabledIT_FE(m_dma, m_stream) != 0; }
enum class DmaErrorType {
Transfer,
DirectMode,
Fifo
};
private:
DMA_TypeDef *m_dma;
uint32_t m_stream;
volatile uint32_t *m_isReg;
volatile uint32_t *m_ifcReg;
static const uint32_t m_FEMasks[8];
static const uint32_t m_DMEMasks[8];
static const uint32_t m_TEMasks[8];
static const uint32_t m_HTMasks[8];
static const uint32_t m_TCMasks[8];
};
} /* namespace f4ll */
#endif /* LL_DMAHELPER_H_ */

View file

@ -0,0 +1,111 @@
/*
* ll_HsUsart.h
*
* Created on: Oct 29, 2019
* Author: abody
*/
#ifndef LL_HSUSART_H_
#define LL_HSUSART_H_
#include <platform/usart_ll.h>
#include "f4ll/ll_usartcore.h"
#include "f4ll/ll_crchandler.h"
namespace f4ll {
struct DMAINFO;
class LL_HsUsart : public LL_CrcHandler::ICallback, public LL_UsartCore
{
public:
LL_HsUsart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t stream_rx, uint32_t stream_tx);
struct PacketHeader { // !!! size should be multiple of 4 !!!
uint8_t startByte;
uint8_t serial;
uint8_t payloadLength;
uint8_t hash;
};
struct Packet {
PacketHeader header;
uint8_t payload[256+sizeof(uint32_t)]; // extra room for crc32
} __attribute__((aligned));
struct Stats {
uint32_t overrun = 0;
uint32_t hdrError = 0;
uint32_t payloadErrror = 0;
uint32_t pep1 = 0;
uint32_t pep2 = 0;
uint32_t rxDmaError = 0;
uint32_t txDmaError = 0;
uint32_t rcvd = 0;
uint32_t premature_hdr = 0;
uint32_t premature_payload = 0;
uint32_t sent = 0;
uint32_t skiped = 0;
};
struct IHsUsartCallback {
virtual bool PacketReceived(LL_HsUsart *caller, uintptr_t userParam, Packet const &packet) = 0;
};
// LL_CRCHandler::ICallback interface functions
virtual void CrcSucceeded(uintptr_t callbackParam, uint32_t crc, int prio);
virtual void CrcFailed(uintptr_t callbackParam, uint32_t crc, int prio);
// LL_UsartCore pure virtual function implementations
virtual void ReceiverIdle(void);
virtual void TransmissionComplete(void);
virtual void RxDmaTransferComplete(void);
virtual void RxDmaHalfTransfer(void);
virtual void RxDmaError(LL_DmaHelper::DmaErrorType reason);
virtual void TxDmaTransferComplete(void);
virtual void TxDmaHalfTransfer(void);
virtual void TxDmaError(LL_DmaHelper::DmaErrorType reason);
void PostPacket(uint8_t const *payload, uint8_t length, bool waitForCrcQueue = true);
void SetupReceive(void);
void RxProcessed(bool second);
uint8_t* GetTxPacketBuffer(void);
USART_TypeDef* GetUsart(void);
Stats const & GetStats(void);
bool IsTxBusy(void);
bool IsTxFailed(void);
bool IsRxBusy(bool second);
bool IsRxFailed(bool second);
void SetCallback(IHsUsartCallback* callback, uintptr_t callbackParam);
private:
void BuildHeader(Packet &packet, uint8_t serialNo, uint8_t length);
bool CheckHeader(PacketHeader &header);
void SwitchRxBuffers(void);
struct Buffer {
Packet packet;
//transfer area ends here
volatile bool busy = 0;
volatile bool error = 0;
uint16_t requestedLength = 0;
uint32_t errorInfo = 0;
};
static const uint8_t STARTMARKER = 0x95;
uint8_t m_rxSerialNo = -1;
uint8_t m_txSerialNo = -1;
Stats m_stats;
bool m_rxBufferSelector = false;
LL_CrcHandler::Slot<2> m_crcSlot;
IHsUsartCallback *m_userCallback = nullptr;
uintptr_t m_userCallbackParam = 0;
Buffer m_txBuffer;
Buffer m_rxBuffers[2];
};
}
#endif /* LL_HSUSART_H_ */

View file

@ -0,0 +1,28 @@
/*
* llmemcpydma.h
*
* Created on: Nov 4, 2019
* Author: abody
*/
#ifndef LL_MEMCPY_DMA_H_
#define LL_MEMCPY_DMA_H_
#include "f4ll/ll_dmahelper.h"
#include "singleton.h"
namespace f4ll {
class LL_MemcpyDma : public Singleton<LL_MemcpyDma>, private LL_DmaHelper
{
friend class Singleton<LL_MemcpyDma>;
public:
void* Copy(void *dst, void const *src, uint16_t length);
void DmaTransferCompleted();
private:
LL_MemcpyDma(DMA_TypeDef *dma, uint32_t stream);
bool volatile m_busy = false;
};
} /* namespace f4ll */
#endif /* LL_MEMCPY_DMA_H_ */

View file

@ -0,0 +1,51 @@
/*
* ll_dmadrivenusartcore.h
*
* Created on: Nov 4, 2019
* Author: abody
*/
#ifndef LL_USARTCORE_H_
#define LL_USARTCORE_H_
#include <platform/usart_ll.h>
#include "f4ll/ll_dmahelper.h"
namespace f4ll {
class LL_UsartCore
{
public:
static inline void HandleUsartIrq(LL_UsartCore *_this) { _this->UsartIsr(); }
static inline void HandleRxDmaIrq(LL_UsartCore *_this) { _this->RxDmaIsr(); }
static inline void HandleTxDmaIrq(LL_UsartCore *_this) { _this->TxDmaIsr(); }
protected:
LL_UsartCore(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx);
virtual void ReceiverIdle() = 0;
virtual void TransmissionComplete() = 0;
virtual void RxDmaTransferComplete() = 0;
virtual void RxDmaHalfTransfer() = 0;
virtual void RxDmaError(LL_DmaHelper::DmaErrorType reason) = 0;
virtual void TxDmaTransferComplete() = 0;
virtual void TxDmaHalfTransfer() = 0;
virtual void TxDmaError(LL_DmaHelper::DmaErrorType reason) = 0;
void SetupTransmit(void const *buffer, uint16_t length);
void SetupReceive(void *buffer, uint16_t length);
void UsartIsr();
void RxDmaIsr();
void TxDmaIsr();
USART_TypeDef *m_usart;
LL_DmaHelper m_rxDma;
LL_DmaHelper m_txDma;
};
} /* namespace f4ll */
#endif /* LL_USARTCORE_H_ */

View file

@ -0,0 +1,65 @@
/*
* ll_consolehandler.cpp
*
* Created on: Nov 7, 2019
* Author: abody
*/
#include "f4ll/ll_consolehandler.h"
#include <f4ll_c/strutil.h>
namespace f4ll {
LL_ConsoleHandler::LL_ConsoleHandler(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: LL_UsartCore(usart, dma, streamRx, streamTx)
{
}
void LL_ConsoleHandler::ReceiverIdle(void) {}
void LL_ConsoleHandler::TransmissionComplete(void) {}
void LL_ConsoleHandler::RxDmaTransferComplete(void) {}
void LL_ConsoleHandler::RxDmaHalfTransfer(void) {}
void LL_ConsoleHandler::RxDmaError(LL_DmaHelper::DmaErrorType reason) {}
void LL_ConsoleHandler::TxDmaTransferComplete(void)
{
LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_txDma.GetDma(), m_txDma.GetStream());
}
void LL_ConsoleHandler::TxDmaHalfTransfer(void) {}
void LL_ConsoleHandler::TxDmaError(LL_DmaHelper::DmaErrorType reason) {}
#define ADDINFO(b,s,u) \
b += strcpy_ex(b,s); \
b += uitodec(b,u);
void LL_ConsoleHandler::PrintStats(uint8_t id, LL_HsUsart &usart)
{
char ids[] = " : ";
char *buffer = m_buffer;
LL_HsUsart::Stats const &stats(usart.GetStats());
ids[0] = id + '0';
buffer += strcpy_ex(buffer, ids);
ADDINFO(buffer, " s: ", stats.sent);
ADDINFO(buffer, " r: ", stats.rcvd);
ADDINFO(buffer, " sk: ", stats.skiped);
ADDINFO(buffer, " or: ", stats.overrun);
ADDINFO(buffer, " he: ", stats.hdrError);
ADDINFO(buffer, " pe: ", stats.payloadErrror);
buffer += strcpy_ex(buffer,",0x");
buffer += uitohex(buffer, stats.pep1, 8);
buffer += strcpy_ex(buffer,",0x");
buffer += uitohex(buffer, stats.pep2, 8);
ADDINFO(buffer, " rde: ", stats.rxDmaError);
ADDINFO(buffer, " tde: ", stats.txDmaError);
ADDINFO(buffer, " pmh: ", stats.premature_hdr);
ADDINFO(buffer, " pmp: ", stats.premature_payload);
buffer += strcpy_ex(buffer, "\r\n");
SetupTransmit(m_buffer, buffer - m_buffer + 1);
}
} /* namespace f4ll */

View file

@ -0,0 +1,156 @@
/*
* ll_crchandler.cpp
*
* Created on: Oct 26, 2019
* Author: compi
*/
#include "f4ll/ll_crchandler.h"
namespace f4ll {
LL_CrcHandler::LL_CrcHandler(DMA_TypeDef *dma, uint32_t stream)
: m_dma(dma, stream)
{
LL_DMA_EnableIT_TC(dma, stream);
LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR);
}
void LL_CrcHandler::AttachSlot(SlotBase &slot)
{
for(unsigned int i = 0; i < slot.m_taskCount; ++i ) {
auto &task(slot[i]);
task.m_address = nullptr;
task.m_wordCount = 0;
task.m_callback = nullptr;
task.m_callbackParam = 0;
}
slot.m_next = m_firstSlot;
uint32_t prim = __get_PRIMASK();
__disable_irq();
m_firstSlot = &slot;
__set_PRIMASK(prim);
}
bool LL_CrcHandler::Enqueue(SlotBase &slot, uint8_t prio, void const *address, uint16_t len, ICallback *cb, uintptr_t cbParam)
{
uint32_t prim = __get_PRIMASK();
bool immediate;
// TODO: do we need sanity check here? (is slot attached, is prio in range, etc...?)
while(IsActive(slot,prio));
__disable_irq();
immediate = m_activeSlot == nullptr;
slot[prio].m_address = (!immediate) ? address : nullptr;
slot[prio].m_wordCount = (len+3)/4;
slot[prio].m_callback = cb;
slot[prio].m_callbackParam = cbParam;
if(immediate) {
m_activeSlot = &slot;
m_activePrio = prio;
}
__set_PRIMASK(prim);
if(immediate) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.GetDma(), m_dma.GetStream(), (uint32_t)address);
LL_DMA_SetDataLength(m_dma.GetDma(), m_dma.GetStream(), (len+3)/4);
LL_DMA_EnableStream(m_dma.GetDma(), m_dma.GetStream());
}
return immediate;
}
bool LL_CrcHandler::IsActive(SlotBase &slot, uint8_t prio) const
{
return prio < slot.m_taskCount && slot[prio].m_wordCount != 0;
}
bool LL_CrcHandler::IsQueued(SlotBase &slot, uint8_t prio) const
{
return prio < slot.m_taskCount && slot[prio].m_address != nullptr;
}
bool LL_CrcHandler::IsRunning(SlotBase &slot, uint8_t prio) const
{
return prio < slot.m_taskCount && slot[prio].m_wordCount && ! slot[prio].m_address;
}
void LL_CrcHandler::DmaTransferCompleted(void)
{
if(* m_dma.GetIsReg() & m_dma.GetTcMask()) { // DMA transfer complete
* m_dma.GetIfcReg() = m_dma.GetTcMask();
LL_DMA_DisableStream(m_dma.GetDma(), m_dma.GetStream());
if(m_activeSlot) {
if((*m_activeSlot)[m_activePrio].m_callback)
(*m_activeSlot)[m_activePrio].m_callback->CrcSucceeded((*m_activeSlot)[m_activePrio].m_callbackParam, CRC->DR, m_activePrio);
else if((*m_activeSlot)[m_activePrio].m_callbackParam)
*reinterpret_cast<uint32_t*>((*m_activeSlot)[m_activePrio].m_callbackParam) = CRC->DR;
}
}
else if(*m_dma.GetIsReg() & m_dma.GetTeMask()) { // DMA transfer error
*m_dma.GetIfcReg() = m_dma.GetTeMask();
LL_DMA_DisableStream(m_dma.GetDma(), m_dma.GetStream());
if(m_activeSlot) {
if((*m_activeSlot)[m_activePrio].m_callback)
(*m_activeSlot)[m_activePrio].m_callback->CrcFailed((*m_activeSlot)[m_activePrio].m_callbackParam, CRC->DR, m_activePrio);
else if((*m_activeSlot)[m_activePrio].m_callbackParam)
*reinterpret_cast<uint32_t*>((*m_activeSlot)[m_activePrio].m_callbackParam) = -1;
}
}
(*m_activeSlot)[m_activePrio].m_callback = nullptr;
(*m_activeSlot)[m_activePrio].m_callbackParam = 0;
(*m_activeSlot)[m_activePrio].m_wordCount = 0;
StartNextTask();
}
void LL_CrcHandler::StartNextTask(void)
{
bool stillMore;
int index = 0;
do {
SlotBase *slot = m_firstSlot;
stillMore = false;
while(slot) {
if(index < slot->m_taskCount) {
if((*slot)[index].m_address) {
m_activeSlot = slot;
m_activePrio = index;
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(m_dma.GetDma(), m_dma.GetStream(), reinterpret_cast<uint32_t>((*slot)[index].m_address));
LL_DMA_SetDataLength(m_dma.GetDma(), m_dma.GetStream(), (*slot)[index].m_wordCount);
LL_DMA_EnableStream(m_dma.GetDma(), m_dma.GetStream());
(*slot)[index].m_address = nullptr; // marking as started
return;
}
if(index + 1 < slot->m_taskCount)
stillMore = true;
}
slot = slot->m_next;
}
++index;
} while(stillMore);
m_activeSlot = nullptr;
}
void LL_CrcHandler::WaitResults(SlotBase &slot, uint8_t prio) const
{
while(IsQueued(slot, prio));
while(IsActive(slot, prio));
}
uint32_t LL_CrcHandler::Compute(
SlotBase &slot, uint8_t prio, void const *address, uint16_t len)
{
uint32_t result;
Enqueue(slot, prio, address, len, nullptr, reinterpret_cast<uintptr_t>(&result));
while(IsActive(slot, prio));
return result;
}
} // namespace f4ll

View file

@ -0,0 +1,26 @@
/*
q * ll_dmahelper.cpp
*
* Created on: Oct 25, 2019
* Author: abody
*/
#include "f4ll/ll_dmahelper.h"
namespace f4ll {
const uint32_t LL_DmaHelper::m_FEMasks[8] = {DMA_LISR_FEIF0, DMA_LISR_FEIF1, DMA_LISR_FEIF2, DMA_LISR_FEIF3, DMA_HISR_FEIF4, DMA_HISR_FEIF5, DMA_HISR_FEIF6, DMA_HISR_FEIF7};
const uint32_t LL_DmaHelper::m_DMEMasks[8] = {DMA_LISR_DMEIF0, DMA_LISR_DMEIF1, DMA_LISR_DMEIF2, DMA_LISR_DMEIF3, DMA_HISR_DMEIF4, DMA_HISR_DMEIF5, DMA_HISR_DMEIF6, DMA_HISR_DMEIF7};
const uint32_t LL_DmaHelper::m_TEMasks[8] = {DMA_LISR_TEIF0, DMA_LISR_TEIF1, DMA_LISR_TEIF2, DMA_LISR_TEIF3, DMA_HISR_TEIF4, DMA_HISR_TEIF5, DMA_HISR_TEIF6, DMA_HISR_TEIF7};
const uint32_t LL_DmaHelper::m_HTMasks[8] = {DMA_LISR_HTIF0, DMA_LISR_HTIF1, DMA_LISR_HTIF2, DMA_LISR_HTIF3, DMA_HISR_HTIF4, DMA_HISR_HTIF5, DMA_HISR_HTIF6, DMA_HISR_HTIF7};
const uint32_t LL_DmaHelper::m_TCMasks[8] = {DMA_LISR_TCIF0, DMA_LISR_TCIF1, DMA_LISR_TCIF2, DMA_LISR_TCIF3, DMA_HISR_TCIF4, DMA_HISR_TCIF5, DMA_HISR_TCIF6, DMA_HISR_TCIF7};
LL_DmaHelper::LL_DmaHelper(DMA_TypeDef *dma, uint32_t stream)
: m_dma(dma)
, m_stream(stream)
, m_isReg((dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LISR : &DMA1->HISR) : ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LISR : &DMA2->HISR))
, m_ifcReg((dma == DMA1) ? ((m_stream < LL_DMA_STREAM_4) ? &DMA1->LIFCR : &DMA1->HIFCR) : ((m_stream < LL_DMA_STREAM_4) ? &DMA2->LIFCR : &DMA2->HIFCR))
{
}
} /* namespace f4ll */

View file

@ -0,0 +1,237 @@
/*
* ll_hsusart_impl.h
*
* Created on: Oct 29, 2019
* Author: abody
*/
#include <string.h>
#include "f4ll/ll_hsusart.h"
namespace f4ll {
template<typename T> static inline T RoundUpTo4(T input)
{
return (input + 3) & (((T)-1) - 3);
}
LL_HsUsart::LL_HsUsart(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: LL_UsartCore(usart, dma, streamRx, streamTx)
{
LL_CrcHandler::Instance().AttachSlot(m_crcSlot);
}
uint8_t *LL_HsUsart::GetTxPacketBuffer(void)
{
return m_txBuffer.packet.payload;
}
USART_TypeDef* LL_HsUsart::GetUsart(void)
{
return m_usart;
}
LL_HsUsart::Stats const & LL_HsUsart::GetStats(void)
{
return m_stats;
}
bool LL_HsUsart::IsTxBusy()
{
return m_txBuffer.busy;
}
bool LL_HsUsart::IsTxFailed()
{
return m_txBuffer.error;
}
bool LL_HsUsart::IsRxBusy(bool second)
{
return m_rxBuffers[second].busy;
}
bool LL_HsUsart::IsRxFailed(bool second)
{
return m_rxBuffers[second].error;
}
void LL_HsUsart::RxProcessed(bool second)
{
m_rxBuffers[second].busy = false;
m_rxBuffers[second].error = false;
}
void LL_HsUsart::SetCallback(IHsUsartCallback *callback, uintptr_t callbackParam)
{
m_userCallback = callback;
m_userCallbackParam = callbackParam;
}
void LL_HsUsart::BuildHeader(Packet &packet, uint8_t serialNo, uint8_t length)
{
uint8_t hash = STARTMARKER;
packet.header.startByte = STARTMARKER;
packet.header.serial = serialNo;
hash ^= serialNo;
packet.header.payloadLength = length;
hash ^= length;
packet.header.hash = hash;
}
bool LL_HsUsart::CheckHeader(PacketHeader &header)
{
return header.startByte == STARTMARKER && (header.startByte ^ header.serial ^ header.payloadLength) == header.hash;
}
void LL_HsUsart::PostPacket(uint8_t const *payload, uint8_t length, bool waitForCrcQueue)
{
uint16_t payloadLength = RoundUpTo4((uint16_t)length);
BuildHeader(m_txBuffer.packet, m_txSerialNo++, length);
if(payload)
memcpy(m_txBuffer.packet.payload, payload, length);
m_txBuffer.requestedLength = sizeof(m_txBuffer.packet.header) + payloadLength + sizeof(uint32_t);
m_txBuffer.busy = true;
m_txBuffer.error = false;
LL_CrcHandler::Instance().Enqueue(m_crcSlot, 0, &m_txBuffer.packet, sizeof(PacketHeader) + payloadLength,
nullptr, reinterpret_cast<uintptr_t>(m_txBuffer.packet.payload + payloadLength));
while(waitForCrcQueue && LL_CrcHandler::Instance().IsQueued(m_crcSlot, 0));
SetupTransmit(&m_txBuffer.packet, m_txBuffer.requestedLength);
++m_stats.sent;
}
void LL_HsUsart::SetupReceive()
{
m_rxBuffers[m_rxBufferSelector].requestedLength = sizeof(m_rxBuffers[m_rxBufferSelector].packet);
LL_UsartCore::SetupReceive(&m_rxBuffers[m_rxBufferSelector], sizeof(m_rxBuffers[m_rxBufferSelector].packet));
}
void LL_HsUsart::ReceiverIdle(void)
{
uint16_t rcvdLen = m_rxBuffers[m_rxBufferSelector].requestedLength - LL_DMA_GetDataLength(m_rxDma.GetDma(), m_rxDma.GetStream());
if(rcvdLen >= sizeof(PacketHeader)) {
if(CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header)) {
if(rcvdLen >= sizeof(PacketHeader) +
RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength)
+ sizeof(uint32_t))
LL_DMA_DisableStream(m_rxDma.GetDma(), m_rxDma.GetStream());
else
++m_stats.premature_payload;
} else {
m_rxBuffers[m_rxBufferSelector].error = 1;
LL_DMA_DisableStream(m_rxDma.GetDma(), m_rxDma.GetStream());
}
} else
++m_stats.premature_hdr;
}
void LL_HsUsart::TransmissionComplete(void)
{
LL_USART_DisableDirectionTx(m_usart); // enforcing an idle frame
LL_USART_EnableDirectionTx(m_usart);
m_txBuffer.busy = 0;
}
void LL_HsUsart::RxDmaTransferComplete(void)
{
if(CheckHeader(m_rxBuffers[m_rxBufferSelector].packet.header))
LL_CrcHandler::Instance().Enqueue(m_crcSlot, 1,
&m_rxBuffers[m_rxBufferSelector].packet,
sizeof(PacketHeader) + RoundUpTo4((uint16_t)m_rxBuffers[m_rxBufferSelector].packet.header.payloadLength),
this, m_rxBufferSelector);
else {
++m_stats.hdrError;
m_rxBuffers[m_rxBufferSelector].error = true;
}
SwitchRxBuffers();
}
void LL_HsUsart::RxDmaHalfTransfer(void)
{
}
void LL_HsUsart::RxDmaError(LL_DmaHelper::DmaErrorType reason)
{
m_rxBuffers[m_rxBufferSelector].error = 1;
++m_stats.rxDmaError;
SwitchRxBuffers();
}
void LL_HsUsart::TxDmaTransferComplete(void)
{
LL_USART_EnableIT_TC(m_usart);
LL_DMA_DisableStream(m_txDma.GetDma(), m_txDma.GetStream());
}
void LL_HsUsart::TxDmaHalfTransfer(void)
{
}
void LL_HsUsart::TxDmaError(LL_DmaHelper::DmaErrorType reason)
{
m_txBuffer.error = 1;
++m_stats.txDmaError;
}
void LL_HsUsart::SwitchRxBuffers(void)
{
++m_stats.rcvd;
m_rxBufferSelector = !m_rxBufferSelector;
if(m_rxBuffers[m_rxBufferSelector].busy)
++m_stats.overrun;
SetupReceive();
}
void LL_HsUsart::CrcSucceeded(uintptr_t callbackParam, uint32_t crc, int prio)
{
Buffer &buf(m_rxBuffers[static_cast<int>(callbackParam)]);
buf.busy = 1;
if(*(uint32_t*) (buf.packet.payload + RoundUpTo4((uint16_t)buf.packet.header.payloadLength)) != crc) {
buf.error = 1;
buf.errorInfo = crc;
++m_stats.payloadErrror;
}
if(m_userCallback)
buf.busy = !m_userCallback->PacketReceived(this, m_userCallbackParam, buf.packet);
}
void LL_HsUsart::CrcFailed(uintptr_t callbackParam, uint32_t crc, int prio)
{
Buffer &buf(m_rxBuffers[static_cast<int>(callbackParam)]);
buf.busy = buf.error = true;
buf.errorInfo = 0;
++m_stats.payloadErrror;
if(m_userCallback)
buf.busy = !m_userCallback->PacketReceived(this, m_userCallbackParam, buf.packet);
}
} // namespace f4ll

View file

@ -0,0 +1,37 @@
/*
* llmemcpydma.cpp
*
* Created on: Nov 4, 2019
* Author: abody
*/
#include "f4ll/ll_memcpydma.h"
namespace f4ll {
LL_MemcpyDma::LL_MemcpyDma(DMA_TypeDef *dma, uint32_t stream)
: LL_DmaHelper(dma, stream)
{
LL_DMA_EnableIT_TC(dma, stream);
}
void* LL_MemcpyDma::Copy(void *dst, void const *src, uint16_t length)
{
LL_DMA_SetM2MSrcAddress(GetDma(), GetStream(), (uint32_t)src);
LL_DMA_SetM2MDstAddress(GetDma(), GetStream(), (uint32_t)dst);
LL_DMA_SetDataLength(GetDma(), GetStream(), (length+3)/4 );
m_busy = 1;
LL_DMA_EnableStream(GetDma(), GetStream());
while(m_busy);
return dst;
}
void LL_MemcpyDma::DmaTransferCompleted()
{
if(*GetIsReg() & GetTcMask()) { // DMA transfer complete
*GetIfcReg() = GetTcMask();
LL_DMA_DisableStream(GetDma(), GetStream());
m_busy = 0;
}
}
} /* namespace f4ll */

View file

@ -0,0 +1,116 @@
/*
* ll_dmadrivenusartcore.cpp
*
* Created on: Nov 4, 2019
* Author: abody
*/
#include "f4ll/ll_usartcore.h"
namespace f4ll {
LL_UsartCore::LL_UsartCore(USART_TypeDef *usart, DMA_TypeDef *dma, uint32_t streamRx, uint32_t streamTx)
: m_usart(usart)
, m_rxDma(dma, streamRx)
, m_txDma(dma, streamTx)
{
LL_DMA_EnableIT_TC(dma, streamRx);
LL_DMA_EnableIT_TE(dma, streamRx);
LL_DMA_EnableIT_TC(dma, streamTx);
LL_DMA_EnableIT_TE(dma, streamTx);
LL_USART_EnableIT_IDLE(usart);
}
void LL_UsartCore::UsartIsr()
{
if(LL_USART_IsActiveFlag_IDLE(m_usart) && LL_USART_IsEnabledIT_IDLE(m_usart)) { // receiver idle
LL_USART_ClearFlag_IDLE(m_usart);
ReceiverIdle();
} else if(LL_USART_IsActiveFlag_TC(m_usart) && LL_USART_IsEnabledIT_TC(m_usart)) { // transmission complete
LL_USART_DisableIT_TC(m_usart);
TransmissionComplete();
}
}
void LL_UsartCore::RxDmaIsr()
{
if(*m_rxDma.GetIsReg() & m_rxDma.GetTcMask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetTcMask();
if(m_rxDma.IsEnabledIt_TC())
RxDmaTransferComplete();
}
if(*m_rxDma.GetIsReg() & m_rxDma.GetHtMask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetHtMask();
if(m_rxDma.IsEnabledIt_HT())
RxDmaHalfTransfer();
}
if(*m_rxDma.GetIsReg() & m_rxDma.GetTeMask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetTeMask();
if(m_rxDma.IsEnabledIt_TE())
RxDmaError(LL_DmaHelper::DmaErrorType::Transfer);
}
if(*m_rxDma.GetIsReg() & m_rxDma.GetFeMask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetFeMask();
if(m_rxDma.IsEnabledIt_FE())
RxDmaError(LL_DmaHelper::DmaErrorType::Fifo);
}
if(*m_rxDma.GetIsReg() & m_rxDma.GetDmeMask()) {
*m_rxDma.GetIfcReg() = m_rxDma.GetDmeMask();
if(m_rxDma.IsEnabledIt_DME())
RxDmaError(LL_DmaHelper::DmaErrorType::DirectMode);
}
}
void LL_UsartCore::TxDmaIsr()
{
if(*m_txDma.GetIsReg() & m_txDma.GetTcMask()) { // DMA transfer complete
*m_txDma.GetIfcReg() = m_txDma.GetTcMask();
if(m_txDma.IsEnabledIt_TC())
TxDmaTransferComplete();
}
if(*m_txDma.GetIsReg() & m_txDma.GetHtMask()) {
*m_txDma.GetIfcReg() = m_txDma.GetHtMask();
if(m_txDma.IsEnabledIt_HT())
TxDmaHalfTransfer();
}
if(*m_txDma.GetIsReg() & m_txDma.GetTeMask()) {
*m_txDma.GetIfcReg() = m_txDma.GetTeMask();
if(m_txDma.IsEnabledIt_TE())
TxDmaError(LL_DmaHelper::DmaErrorType::Transfer);
}
if(*m_txDma.GetIsReg() & m_txDma.GetFeMask()) {
*m_txDma.GetIfcReg() = m_txDma.GetFeMask();
if(m_txDma.IsEnabledIt_FE())
TxDmaError(LL_DmaHelper::DmaErrorType::Fifo);
}
if(*m_txDma.GetIsReg() & m_txDma.GetDmeMask()) {
*m_txDma.GetIfcReg() = m_txDma.GetDmeMask();
if(m_txDma.IsEnabledIt_DME())
TxDmaError(LL_DmaHelper::DmaErrorType::DirectMode);
}
}
void LL_UsartCore::SetupTransmit(void const *buffer, uint16_t length)
{
LL_DMA_ConfigAddresses(m_txDma.GetDma(), m_txDma.GetStream(), reinterpret_cast<uint32_t>(buffer),
LL_USART_DMA_GetRegAddr(m_usart), LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetDataLength(m_txDma.GetDma(), m_txDma.GetStream(), length);
LL_USART_EnableDMAReq_TX(m_usart);
LL_DMA_EnableStream(m_txDma.GetDma(), m_txDma.GetStream());
}
void LL_UsartCore::SetupReceive(void *buffer, uint16_t length)
{
LL_DMA_ConfigAddresses(m_rxDma.GetDma(), m_rxDma.GetStream(), LL_USART_DMA_GetRegAddr(m_usart),
reinterpret_cast<uint32_t>(buffer), LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetDataLength(m_rxDma.GetDma(), m_rxDma.GetStream(), length);
LL_USART_EnableDMAReq_RX(m_usart);
LL_USART_ClearFlag_ORE(m_usart);
LL_DMA_EnableStream(m_rxDma.GetDma(), m_rxDma.GetStream());
}
} /* namespace f4ll */

View file

@ -0,0 +1,11 @@
#encoder
SELF_DIR := $(abspath $(dir $(lastword $(MAKEFILE_LIST))))
REL_DIR := $(patsubst %/,%,$(dir $(lastword $(MAKEFILE_LIST))))
ifeq ($(MKDBG), 1)
$(info >>> $(REL_DIR)/component.mk)
endif
$(eval C_INCLUDES += -I$(REL_DIR)/inc)
$(eval C_SOURCES += $(wildcard $(REL_DIR)/src/*.c))
ifeq ($(MKDBG), 1)
$(info <<<)
endif

View file

@ -0,0 +1,19 @@
/*
* interrupt.h
*
* Created on: Aug 29, 2019
* Author: abody
*/
#ifndef INTERRUPT_HANDLERS_H_
#define INTERRUPT_HANDLERS_H_
#include "usart.h"
#include "f4ll_c/dma_helper.h"
void HandleConsoleUsartTxDmaIrq(DMAINFO *info, USART_TypeDef *usart);
void HandleConsoleUsartIrq(USART_TypeDef *usart);
void PrintStats(char *buffer, uint8_t id, struct usart_stats *stats, USART_TypeDef *usart, DMAINFO *dmaInfo);
#endif /* INTERRUPT_HANDLERS_H_ */

View file

@ -0,0 +1,53 @@
/*
* interrupt.h
*
* Created on: Aug 29, 2019
* Author: abody
*/
#ifndef CRC_HANDLER_H_
#define CRC_HANDLER_H_
#include <inttypes.h>
#ifdef HAVE_CONFIG
#include "config.h"
#endif // HAVE_CONFIG
#include "f4ll_c/dma_helper.h"
#ifndef CRCTASKCOUNT
#define CRCTASKCOUNT 2
#endif
typedef struct {
DMAINFO dmaInfo;
volatile uint8_t activeSlot;
struct crctask_t {
void *address;
uint16_t wordCount;
void (*callback)(void*, uint32_t, uint8_t);
void *callbackParam;
} volatile crcTasks[CRCTASKCOUNT];
} CRCSTATUS;
void InitCrcStatus(CRCSTATUS *status, DMA_TypeDef *dma, uint32_t stream);
static inline uint8_t GetActiveSlot(CRCSTATUS *status) {
return status->activeSlot;
}
static inline uint8_t IsSlotQueued(CRCSTATUS *status, uint8_t slot) {
return status->crcTasks[slot].address != NULL;
}
static inline uint8_t IsSlotActive(CRCSTATUS *status, uint8_t slot) {
return status->crcTasks[slot].callback != NULL || status->crcTasks[slot].callbackParam != NULL;
}
uint8_t EnqueueCrcTask(CRCSTATUS *crcStatus, uint8_t slot, uint8_t *address, uint16_t len,
void (*callback)(void*, uint32_t, uint8_t), void* callbackParam);
void WaitCrcResults(CRCSTATUS *status, uint8_t slot);
uint32_t ComputeCrc(CRCSTATUS *status, uint8_t slot, uint8_t *address, uint16_t len);
void ComputeCrcAsync(CRCSTATUS *status, uint8_t slot,
uint8_t *address, uint16_t len,
void (*callback)(void*, uint32_t, uint8_t), void* callbackParam);
void HandleCrcDmaIrq(CRCSTATUS *status);
#endif /* CRC_HANDLER_H_ */

View file

@ -0,0 +1,34 @@
/*
* dma_helper.h
*
* Created on: Sep 18, 2019
* Author: abody
*/
#ifndef DMA_HELPER_H_
#define DMA_HELPER_H_
#include <inttypes.h>
#include <platform/dma_ll.h>
typedef struct {
DMA_TypeDef *dma;
uint32_t stream;
volatile uint32_t *isReg;
volatile uint32_t *ifcReg;
uint32_t feMask;
uint32_t dmeMask;
uint32_t teMask;
uint32_t htMask;
uint32_t tcMask;
} DMAINFO;
volatile uint32_t* GetIsReg(DMA_TypeDef *dma, uint32_t stream);
volatile uint32_t* GetIfcReg(DMA_TypeDef *dma, uint32_t stream);
uint32_t GetDmeMask(uint32_t stream);
uint32_t GetTeMask(uint32_t stream);
uint32_t GetHtMask(uint32_t stream);
uint32_t GetTcMask(uint32_t stream);
void InitDmaInfo(DMAINFO *info, DMA_TypeDef *dma, uint32_t stream);
#endif /* DMA_HELPER_H_ */

View file

@ -0,0 +1 @@
.

View file

@ -0,0 +1,18 @@
/*
* memcpy_dma.h
*
* Created on: Oct 1, 2019
* Author: abody
*/
#ifndef MEMCPY_DMA_H_
#define MEMCPY_DMA_H_
#include <inttypes.h>
#include <platform/dma_ll.h>
void InitMemcpyDma(DMA_TypeDef *dma, uint32_t stream);
void * MemcpyDma(void *dst, void const *src, size_t length);
void HandleMemcpyDmaIrq();
#endif /* MEMCPY_DMA_H_ */

View file

@ -0,0 +1,31 @@
/*
* strutil.h
*
* Created on: Feb 11, 2017
* Author: compi
*/
#ifndef _STM32PLUS_STRUTIL_H_
#define _STM32PLUS_STRUTIL_H_
#include <stddef.h>
#include <inttypes.h>
#ifdef __cplusplus
extern "C" {
#endif
//////////////////////////////////////////////////////////////////////////////
size_t strcpy_ex(char *dst, char const *src);
size_t uitodec(char* buffer, uint32_t data);
size_t uitohex(char* buffer, uint32_t data, uint8_t chars);
size_t itodec(char* buffer, int data);
size_t itohex(char* buffer, int data);
void strrev(char *first, char *last);
char tochr(const uint8_t in, const uint8_t upper);
#ifdef __cplusplus
}
#endif
#endif /* _STM32PLUS_STRUTIL_H_ */

View file

@ -0,0 +1,142 @@
/*
* usart_handler.h
*
* Created on: Sep 16, 2019
* Author: abody
*/
#ifndef USART_HANDLER_H_
#define USART_HANDLER_H_
#include <inttypes.h>
#include "f4ll_c/dma_helper.h"
#include "f4ll_c/crc_handler.h"
struct _usart_status;
typedef struct _usart_status USARTSTATUS;
struct usart_buffer;
typedef void (*PACKETRECEIVEDCALLBACK)(void *userParam, struct usart_buffer *buffer);
void InitUartStatus(
USARTSTATUS *st, USART_TypeDef *usart, DMA_TypeDef *dma,
uint32_t stream_rx, uint32_t stream_tx,
CRCSTATUS *crcStatus, uint8_t rxCrcSlot, uint8_t txCrcSlot,
PACKETRECEIVEDCALLBACK packetReceivedCallback, void * packetReceivedCallbackParam);
uint8_t* GetTxBuffer(USARTSTATUS *status);
uint8_t PostPacket(USARTSTATUS *status, uint8_t const *payload, uint16_t length, CRCSTATUS *crcStatus);
void SetupReceive(USARTSTATUS *status);
void SetupTransmit(USART_TypeDef *usart, DMA_TypeDef* dma, uint32_t stream, void *buffer, uint32_t length);
void ConsumePacket(USARTSTATUS *status, uint8_t packetIndex, CRCSTATUS *crcStatus);
void HandleUsartRxDmaIrq(USARTSTATUS *status);
void HandleUsartTxDmaIrq(USARTSTATUS *status);
void HandleUsartIrq(USARTSTATUS *status);
/******************************************************************************************
*
*
*
*/
struct usart_stats {
uint32_t overrun;
uint32_t hdrError;
uint32_t lastErrHdr;
uint32_t payloadErrror;
uint32_t pep1, pep2;
uint32_t dmaError;
uint32_t rcvd;
uint32_t premature_hdr;
uint32_t premature_payload;
uint32_t sent;
uint32_t skiped;
};
typedef struct {
uint8_t startByte;
uint8_t serial;
uint8_t payloadLength;
uint8_t hash;
} USARTPACKETHEADER;
typedef struct {
USARTPACKETHEADER header;
//!!! should start on word offset !!!
uint8_t payload[256+sizeof(uint32_t)]; // extra room for crc32
} __attribute__((aligned)) USARTPACKET;
struct usart_buffer {
USARTPACKET packet;
//transfer area ends here
volatile uint8_t busy;
volatile uint8_t error;
uint16_t requestedLength;
uint32_t errorInfo;
USARTSTATUS *usartStatus;
};
struct _usart_status {
USART_TypeDef *usart;
DMAINFO rxDmaInfo;
DMAINFO txDmaInfo;
CRCSTATUS *crcStatus;
uint8_t rxSerial;
uint8_t txSerial;
struct usart_stats stats;
uint8_t activeRxBuf;
uint8_t rxCrcSlot;
uint8_t txCrcSlot;
PACKETRECEIVEDCALLBACK packetReceivedCallback;
void *packetReceivedCallbacParam;
struct usart_buffer txBuffer;
struct usart_buffer rxBuffers[2];
};
#ifndef USART_STATS_DISABLED
static inline void StatsIncOverrun(struct usart_stats *s) {
++s->overrun;
}
static inline void StatsIncHdrError(struct usart_stats *s, uint32_t hdr) {
++s->hdrError;
s->lastErrHdr = hdr;
}
static inline void StatsIncPayloadError(struct usart_stats *s, uint32_t pep1, uint32_t pep2) {
++s->payloadErrror;
s->pep1 = pep1;
s->pep2 = pep2;
}
static inline void StatsIncDmaError(struct usart_stats *s) {
++s->dmaError;
}
static inline void StatsIncRcvd(struct usart_stats *s) {
++s->rcvd;
}
static inline void StatsIncPremature_hdr(struct usart_stats *s) {
++s->premature_hdr;
}
static inline void StatsIncPremature_payload(struct usart_stats *s) {
++s->premature_payload;
}
static inline void StatsIncSent(struct usart_stats *s) {
++s->sent;
}
static inline void StatsAddSkiped(struct usart_stats *s, uint8_t cnt) {
s->skiped += s->rcvd > 2 ? cnt : 0;
}
#else // USART_STATS_DISABLED
#define StatsIncOverrun(x)
#define StatsIncHdrError(x,y)
#define StatsIncPayloadError(x,y,z)
#define StatsIncDmaError(x)
#define StatsIncRcvd(x)
#define StatsIncPremature_hdr(x)
#define StatsIncPremature_payload(x)
#define StatsIncSent(x)
#define StatsAddSkiped(x)
#endif // USART_STATS_DISABLED
#endif /* UART_HANDLER_H_ */

View file

@ -0,0 +1,68 @@
/*
* interrupt.c
*
* Created on: Aug 29, 2019
* Author: abody
*/
#include "main.h"
#include "globals.h"
#include "f4ll_c/usart_handler.h"
#include "f4ll_c/strutil.h"
#ifndef DIAG_INTERRUPT_IN
# define DIAG_INTERRUPT_IN()
#endif
#ifndef DIAG_INTERRUPT_OUT
# define DIAG_INTERRUPT_OUT()
#endif
void HandleConsoleUsartTxDmaIrq(DMAINFO *info, USART_TypeDef *usart) // debug usart
{
DIAG_INTERRUPT_IN();
if(*info->isReg & info->tcMask) { // DMA transfer complete
*info->ifcReg = info->tcMask;
LL_USART_EnableIT_TC(usart);
LL_DMA_DisableStream(info->dma, info->stream);
}
DIAG_INTERRUPT_OUT();
}
void HandleConsoleUsartIrq(USART_TypeDef *usart)
{
DIAG_INTERRUPT_IN();
if(LL_USART_IsActiveFlag_TC(usart) && LL_USART_IsEnabledIT_TC(usart)) // transmission complete
LL_USART_DisableIT_TC(usart);
DIAG_INTERRUPT_OUT();
}
#define ADDINFO(b,s,u) \
b += strcpy_ex(b,s); \
b += uitodec(b,u);
void PrintStats(char *buffer, uint8_t id, struct usart_stats *stats, USART_TypeDef *usart, DMAINFO *dmaInfo)
{
char ids[] = " : ";
char *bs = buffer;
ids[0] = id + '0';
buffer += strcpy_ex(buffer, ids);
ADDINFO(buffer, " s: ", stats->sent);
ADDINFO(buffer, " r: ", stats->rcvd);
ADDINFO(buffer, " sk: ", stats->skiped);
ADDINFO(buffer, " or: ", stats->overrun);
ADDINFO(buffer, " he: ", stats->hdrError);
buffer += strcpy_ex(buffer,",0x");
buffer += uitohex(buffer, stats->lastErrHdr, 8);
ADDINFO(buffer, " pe: ", stats->payloadErrror);
buffer += strcpy_ex(buffer,",0x");
buffer += uitohex(buffer, stats->pep1, 8);
buffer += strcpy_ex(buffer,",0x");
buffer += uitohex(buffer, stats->pep2, 8);
ADDINFO(buffer, " de: ", stats->dmaError);
ADDINFO(buffer, " pmh: ", stats->premature_hdr);
ADDINFO(buffer, " pmp: ", stats->premature_payload);
buffer += strcpy_ex(buffer, "\r\n");
SetupTransmit(usart, dmaInfo->dma, dmaInfo->stream, bs, buffer - bs + 1);
}

View file

@ -0,0 +1,132 @@
/*
* interrupt.c
*
* Created on: Aug 29, 2019
* Author: abody
*/
#include <string.h>
#include <platform/crc_ll.h>
#include "diag.h"
#include "f4ll_c/dma_helper.h"
#include "f4ll_c/crc_handler.h"
#ifndef DIAG_CRC_CALC_START
# define DIAG_CRC_CALC_START()
#endif
#ifndef DIAG_CRC_CALC_END
# define DIAG_CRC_CALC_END()
#endif
#ifndef DIAG_INTERRUPT_IN
# define DIAG_INTERRUPT_IN()
#endif
#ifndef DIAG_INTERRUPT_OUT
# define DIAG_INTERRUPT_OUT()
#endif
void InitCrcStatus(CRCSTATUS *st, DMA_TypeDef *dma, uint32_t stream)
{
InitDmaInfo(&st->dmaInfo, dma, stream);
LL_DMA_EnableIT_TC(dma, stream);
LL_DMA_EnableIT_TE(dma, stream);
LL_DMA_SetM2MDstAddress(dma, stream, (uint32_t)&CRC->DR);
st->activeSlot = 0xff;
memset((void*)st->crcTasks, 0, sizeof(st->crcTasks));
}
uint8_t EnqueueCrcTask(CRCSTATUS *status, uint8_t slot, uint8_t *address, uint16_t len,
void (*callback)(void*, uint32_t, uint8_t), void* callbackParam)
{
uint32_t prim = __get_PRIMASK();
uint16_t need_start;
while(status->activeSlot == slot);
__disable_irq();
need_start = (status->activeSlot == 0xff);
status->crcTasks[slot].address = need_start ? NULL : address;
status->crcTasks[slot].wordCount = (len+3)/4;
status->crcTasks[slot].callback = callback;
status->crcTasks[slot].callbackParam = callbackParam;
if(need_start)
status->activeSlot = slot;
__set_PRIMASK(prim);
if(need_start) {
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(status->dmaInfo.dma, status->dmaInfo.stream, (uint32_t)address);
LL_DMA_SetDataLength(status->dmaInfo.dma, status->dmaInfo.stream, (len+3)/4);
DIAG_CRC_CALC_START();
LL_DMA_EnableStream(status->dmaInfo.dma, status->dmaInfo.stream);
}
return need_start;
}
void WaitCrcResults(CRCSTATUS *status, uint8_t slot)
{
while(IsSlotQueued(status, slot));
while(GetActiveSlot(status) == slot);
}
uint32_t ComputeCrc(CRCSTATUS *status, uint8_t slot, uint8_t *address, uint16_t len)
{
uint32_t result;
EnqueueCrcTask(status, slot, address, len, NULL, &result);
while(status->crcTasks[slot].callbackParam);
return result;
}
void StartNextCrcTask(CRCSTATUS *status)
{
uint16_t slot;
for(slot = 0; slot < CRCTASKCOUNT; ++slot)
if(status->crcTasks[slot].address) {
status->activeSlot = slot;
CRC->CR = 1;
LL_DMA_SetM2MSrcAddress(status->dmaInfo.dma, status->dmaInfo.stream, (uint32_t)status->crcTasks[slot].address);
LL_DMA_SetDataLength(status->dmaInfo.dma, status->dmaInfo.stream, status->crcTasks[slot].wordCount);
DIAG_CRC_CALC_START();
LL_DMA_EnableStream(status->dmaInfo.dma, status->dmaInfo.stream);
status->crcTasks[slot].address = NULL; // marking as started
return;
}
status->activeSlot = 0xff;
}
void HandleCrcDmaIrq(CRCSTATUS *status)
{
DIAG_INTERRUPT_IN();
if(*status->dmaInfo.isReg & status->dmaInfo.tcMask) { // DMA transfer complete
*status->dmaInfo.ifcReg = status->dmaInfo.tcMask;
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot != 0xff) {
struct crctask_t *tsk = (struct crctask_t *)&status->crcTasks[status->activeSlot];
if(tsk->callback)
tsk->callback(tsk->callbackParam, CRC->DR, 1);
else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = CRC->DR;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END();
StartNextCrcTask(status);
}
}
else if(*status->dmaInfo.isReg & status->dmaInfo.teMask) {
*status->dmaInfo.ifcReg = status->dmaInfo.teMask;
LL_DMA_DisableStream(status->dmaInfo.dma, status->dmaInfo.stream);
if(status->activeSlot != 0xff) {
struct crctask_t *tsk = (struct crctask_t *)&status->crcTasks[status->activeSlot];
if(tsk->callback)
tsk->callback(tsk->callbackParam, CRC->DR, 0);
else if(tsk->callbackParam)
*(uint32_t*)tsk->callbackParam = 0xffffffff;
tsk->callback = tsk->callbackParam = NULL; // marking as inactive
DIAG_CRC_CALC_END();
StartNextCrcTask(status);
}
}
DIAG_INTERRUPT_OUT();
}

View file

@ -0,0 +1,78 @@
/*
* dma_helper.c
*
* Created on: Sep 18, 2019
* Author: abody
*/
#include "f4ll_c/dma_helper.h"
volatile uint32_t* GetIsReg(DMA_TypeDef *dma, uint32_t stream)
{
if(dma == DMA1)
return (stream < LL_DMA_STREAM_4) ? &DMA1->LISR : &DMA1->HISR;
else
return (stream < LL_DMA_STREAM_4) ? &DMA2->LISR : &DMA2->HISR;
}
volatile uint32_t* GetIfcReg(DMA_TypeDef *dma, uint32_t stream)
{
if(dma == DMA1)
return (stream < LL_DMA_STREAM_4) ? &DMA1->LIFCR : &DMA1->HIFCR;
else
return (stream < LL_DMA_STREAM_4) ? &DMA2->LIFCR : &DMA2->HIFCR;
}
uint32_t GetFeMask(uint32_t stream)
{
static const uint32_t feMasks[8] = {
DMA_LISR_FEIF0, DMA_LISR_FEIF1, DMA_LISR_FEIF2, DMA_LISR_FEIF3, DMA_HISR_FEIF4, DMA_HISR_FEIF5, DMA_HISR_FEIF6, DMA_HISR_FEIF7
};
return feMasks[stream];
}
uint32_t GetDmeMask(uint32_t stream)
{
static const uint32_t dmeMasks[8] = {
DMA_LISR_DMEIF0, DMA_LISR_DMEIF1, DMA_LISR_DMEIF2, DMA_LISR_DMEIF3, DMA_HISR_DMEIF4, DMA_HISR_DMEIF5, DMA_HISR_DMEIF6, DMA_HISR_DMEIF7
};
return dmeMasks[stream];
}
uint32_t GetTeMask(uint32_t stream)
{
static const uint32_t teMasks[8] = {
DMA_LISR_TEIF0, DMA_LISR_TEIF1, DMA_LISR_TEIF2, DMA_LISR_TEIF3, DMA_HISR_TEIF4, DMA_HISR_TEIF5, DMA_HISR_TEIF6, DMA_HISR_TEIF7
};
return teMasks[stream];
}
uint32_t GetHtMask(uint32_t stream)
{
static const uint32_t htMasks[8] = {
DMA_LISR_HTIF0, DMA_LISR_HTIF1, DMA_LISR_HTIF2, DMA_LISR_HTIF3, DMA_HISR_HTIF4, DMA_HISR_HTIF5, DMA_HISR_HTIF6, DMA_HISR_HTIF7
};
return htMasks[stream];
}
uint32_t GetTcMask(uint32_t stream)
{
static const uint32_t tcMasks[8] = {
DMA_LISR_TCIF0, DMA_LISR_TCIF1, DMA_LISR_TCIF2, DMA_LISR_TCIF3, DMA_HISR_TCIF4, DMA_HISR_TCIF5, DMA_HISR_TCIF6, DMA_HISR_TCIF7
};
return tcMasks[stream];
}
void InitDmaInfo(DMAINFO *info, DMA_TypeDef *dma, uint32_t stream)
{
info->dma = dma;
info->stream = stream;
info->isReg = GetIsReg(dma, stream);
info->ifcReg = GetIfcReg(dma, stream);
info->feMask = GetFeMask(stream);
info->dmeMask = GetDmeMask(stream);
info->teMask = GetTeMask(stream);
info->htMask = GetHtMask(stream);
info->tcMask = GetTcMask(stream);
}

View file

@ -0,0 +1,48 @@
/*
* memcpy_dma.c
*
* Created on: Oct 1, 2019
* Author: abody
*/
#include "f4ll_c/memcpy_dma.h"
#include "f4ll_c/dma_helper.h"
#ifndef DIAG_INTERRUPT_IN
# define DIAG_INTERRUPT_IN()
#endif
#ifndef DIAG_INTERRUPT_OUT
# define DIAG_INTERRUPT_OUT()
#endif
volatile uint8_t g_memcpyDmaBusy = 0;
static DMAINFO g_memcpyDmaInfo;
void InitMemcpyDma(DMA_TypeDef *dma, uint32_t stream)
{
InitDmaInfo(&g_memcpyDmaInfo, dma, stream);
LL_DMA_EnableIT_TC(dma, stream);
}
void * MemcpyDma(void *dst, void const *src, size_t length)
{
LL_DMA_SetM2MSrcAddress(g_memcpyDmaInfo.dma, g_memcpyDmaInfo.stream, (uint32_t)src);
LL_DMA_SetM2MDstAddress(g_memcpyDmaInfo.dma, g_memcpyDmaInfo.stream, (uint32_t)dst);
LL_DMA_SetDataLength(g_memcpyDmaInfo.dma, g_memcpyDmaInfo.stream, (length+3)/4 );
g_memcpyDmaBusy = 1;
LL_DMA_EnableStream(g_memcpyDmaInfo.dma, g_memcpyDmaInfo.stream);
while(g_memcpyDmaBusy);
return dst;
}
void HandleMemcpyDmaIrq()
{
DIAG_INTERRUPT_IN();
if(*g_memcpyDmaInfo.isReg & g_memcpyDmaInfo.tcMask) { // DMA transfer complete
*g_memcpyDmaInfo.ifcReg = g_memcpyDmaInfo.tcMask;
LL_DMA_DisableStream(g_memcpyDmaInfo.dma, g_memcpyDmaInfo.stream);
g_memcpyDmaBusy = 0;
}
DIAG_INTERRUPT_OUT();
}

View file

@ -0,0 +1,110 @@
#include <stdint.h>
#include "f4ll_c/strutil.h"
//////////////////////////////////////////////////////////////////////////////
size_t strcpy_ex(char *dst, char const *src)
{
size_t ret = 0;
do {
*dst++ = *src;
++ret;
} while(*src++);
return ret - 1;
}
//////////////////////////////////////////////////////////////////////////////
void strrev(char *first, char *last)
{
char tmp;
while(last > first) {
tmp = *first;
*first++ = *last;
*last-- = tmp;
}
}
//////////////////////////////////////////////////////////////////////////////
char tochr(const uint8_t in, const uint8_t upper)
{
return in + ((in < 10) ? '0' : (upper ? 'A' : 'a') - 10);
}
//////////////////////////////////////////////////////////////////////////////
size_t uitodec(char* buffer, uint32_t data)
{
char *b2 = buffer;
if(!data) {
*b2++ = '0';
*b2 = '\0';
return 1;
}
while(data) {
*b2++ = (data % 10) + '0';
data /= 10;
}
size_t ret = b2 - buffer;
*b2-- = 0;
strrev(buffer, b2);
return ret;
}
//////////////////////////////////////////////////////////////////////////////
size_t uitohex(char* buffer, uint32_t data, uint8_t chars)
{
char *b2 = buffer;
size_t ret = 0;
if(chars == 0xff || !chars)
{
if(!data) {
*b2++ = '0';
*b2 = '\0';
return 1;
}
while(data) {
uint8_t curval = data & 0x0f;
*b2++ = tochr(curval, 1);
data >>= 4;
}
ret = b2 - buffer;
}
else
{
ret = chars;
for(uint8_t pos = 0; pos < (uint8_t)ret; ++pos) {
*b2++ = tochr(data & 0x0f, 1);
data >>= 4;
}
}
*b2-- = 0;
strrev(buffer, b2);
return ret;
}
//////////////////////////////////////////////////////////////////////////////
size_t itodec(char* buffer, int data)
{
if(data < 0) {
*buffer++ = '-';
return uitodec(buffer, -data) + 1;
}
return uitodec(buffer, data);
}
//////////////////////////////////////////////////////////////////////////////
size_t itohex(char* buffer, int data)
{
if(data < 0) {
*buffer++ = '-';
return uitohex(buffer, -data, 0) + 1;
}
return uitohex(buffer, data, 0);
}

View file

@ -0,0 +1,258 @@
/*
* usart_handler.c
*
* Created on: Sep 16, 2019
* Author: abody
*/
#include <string.h>
#include <platform/usart_ll.h>
#include "diag.h"
#include "f4ll_c/usart_handler.h"
#include "f4ll_c/dma_helper.h"
#include "f4ll_c/crc_handler.h"
#include "f4ll_c/memcpy_dma.h"
#ifndef DIAG_RX_BUFFER_SWITCH
# define DIAG_RX_BUFFER_SWITCH(x)
#endif
#ifndef DIAG_INTERRUPT_IN
# define DIAG_INTERRUPT_IN()
#endif
#ifndef DIAG_INTERRUPT_OUT
# define DIAG_INTERRUPT_OUT()
#endif
#define STARTMARKER 0x95
static inline uint32_t RoundUpTo4(uint32_t inp)
{
return (inp + 3) & 0xfffc;
}
void InitUartStatus(
USARTSTATUS *st, USART_TypeDef *usart, DMA_TypeDef *dma,
uint32_t stream_rx, uint32_t stream_tx,
CRCSTATUS *crcStatus, uint8_t rxCrcSlot, uint8_t txCrcSlot,
PACKETRECEIVEDCALLBACK packetReceivedCallback, void * packetReceivedCallbackParam)
{
st->usart = usart;
InitDmaInfo(&st->rxDmaInfo, dma, stream_rx);
InitDmaInfo(&st->txDmaInfo, dma, stream_tx);
st->txBuffer.busy = 0;
st->txBuffer.error = 0;
st->txBuffer.requestedLength = 0;
st->rxBuffers[0].busy = 0;
st->rxBuffers[1].busy = 0;
st->rxBuffers[0].error = 0;
st->rxBuffers[1].error = 0;
st->rxBuffers[0].requestedLength = 0;
st->rxBuffers[1].requestedLength = 0;
st->txBuffer.usartStatus = st;
st->rxBuffers[0].usartStatus = st;
st->rxBuffers[1].usartStatus = st;
st->packetReceivedCallback = packetReceivedCallback;
st->packetReceivedCallbacParam = packetReceivedCallbackParam;
st->rxSerial = -1;
st->txSerial = 0;
st->activeRxBuf = 0;
st->crcStatus = crcStatus;
st->txCrcSlot = txCrcSlot;
st->rxCrcSlot = rxCrcSlot;
memset(&st->stats, 0, sizeof(st->stats));
LL_DMA_EnableIT_TC(dma, stream_rx);
LL_DMA_EnableIT_TE(dma, stream_rx);
LL_DMA_EnableIT_TC(dma, stream_tx);
LL_DMA_EnableIT_TE(dma, stream_tx);
LL_USART_EnableIT_IDLE(usart);
}
uint8_t* GetTxBuffer(USARTSTATUS *status)
{
return status->txBuffer.packet.payload;
}
static inline void BuildHeader(struct usart_buffer *buffer, uint8_t serial, uint8_t length)
{
uint8_t hash = STARTMARKER;
buffer->packet.header.startByte = STARTMARKER;
buffer->packet.header.serial = serial;
hash ^= serial;
buffer->packet.header.payloadLength = length - 1;
hash ^= length - 1;
buffer->packet.header.hash = hash;
}
static inline uint8_t CheckHeader(USARTPACKET *packet)
{
return packet->header.startByte == STARTMARKER && (packet->header.startByte ^ packet->header.serial ^ packet->header.payloadLength) == packet->header.hash;
}
uint8_t PostPacket(USARTSTATUS *status, uint8_t const *payload, uint16_t length, CRCSTATUS *crcStatus)
{
if(length > 256)
return 1;
BuildHeader(&status->txBuffer, status->txSerial++, length);
uint16_t payloadLength = RoundUpTo4(length);
if(payload) {
#ifdef USART_USE_MEMCPY_DMA
if((uint32_t)payload & 3)
memcpy(status->txBuffer.packet.payload, payload, length);
else
MemcpyDma(status->txBuffer.packet.payload, payload, length);
#else
memcpy(status->txBuffer.packet.payload, payload, length);
#endif
}
status->txBuffer.requestedLength = sizeof(USARTPACKETHEADER) + payloadLength + sizeof(uint32_t); // +4 for the hash
status->txBuffer.busy = 1;
status->txBuffer.error = 0;
EnqueueCrcTask(crcStatus, status->txCrcSlot, status->txBuffer.packet.payload, length,
NULL, (uint32_t*)(status->txBuffer.packet.payload + payloadLength));
while(IsSlotQueued(crcStatus, status->txCrcSlot));
SetupTransmit(status->usart, status->txDmaInfo.dma, status->txDmaInfo.stream, &status->txBuffer.packet, status->txBuffer.requestedLength);
StatsIncSent(&status->stats);
return 0;
}
void SetupReceive(USARTSTATUS *status)
{
uint8_t packetIndex = status->activeRxBuf;
LL_DMA_ConfigAddresses(status->rxDmaInfo.dma, status->rxDmaInfo.stream, LL_USART_DMA_GetRegAddr(status->usart), (uint32_t)&status->rxBuffers[packetIndex],
LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
status->rxBuffers[packetIndex].requestedLength = sizeof(status->rxBuffers[packetIndex].packet);
LL_DMA_SetDataLength(status->rxDmaInfo.dma, status->rxDmaInfo.stream, status->rxBuffers[packetIndex].requestedLength); // payload already have extra room for hash
LL_USART_EnableDMAReq_RX(status->usart);
LL_USART_ClearFlag_ORE(status->usart);
LL_DMA_EnableStream(status->rxDmaInfo.dma, status->rxDmaInfo.stream);
}
void ConsumePacket(USARTSTATUS *status, uint8_t packetIndex, CRCSTATUS *crcStatus)
{
struct usart_buffer *buffer = &status->rxBuffers[packetIndex];
if(buffer->busy) {
if(buffer->error)
StatsIncPayloadError(&status->stats, buffer->errorInfo, *(uint32_t*) (buffer->packet.payload + RoundUpTo4(buffer->packet.header.payloadLength + 1)));
else {
uint8_t diff = buffer->packet.header.serial - status->rxSerial;
if(diff > 1)
StatsAddSkiped(&status->stats, diff - 1);
status->rxSerial = buffer->packet.header.serial;
}
}
buffer->busy = buffer->error = 0;
}
void SetupTransmit(USART_TypeDef *usart, DMA_TypeDef* dma, uint32_t stream, void *buffer, uint32_t length)
{
LL_DMA_ConfigAddresses(dma, stream, (uint32_t)buffer, LL_USART_DMA_GetRegAddr(usart), LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetDataLength(dma, stream, length);
LL_USART_EnableDMAReq_TX(usart);
LL_DMA_EnableStream(dma, stream);
}
void RxCrcComputedCallback(void *callbackParm, uint32_t calculatedCrc, uint8_t success)
{
struct usart_buffer *ub = (struct usart_buffer*) callbackParm;
if(!success)
ub->error = 1;
else if(*(uint32_t*) (ub->packet.payload + RoundUpTo4(ub->packet.header.payloadLength + 1)) == calculatedCrc)
ub->busy = 1;
else {
ub->error = ub->busy = 1;
ub->errorInfo = calculatedCrc;
}
if(ub->usartStatus->packetReceivedCallback)
ub->usartStatus->packetReceivedCallback(ub->usartStatus->packetReceivedCallbacParam, ub);
}
void HandleUsartRxDmaIrq(USARTSTATUS *status)
{
DIAG_INTERRUPT_IN();
StatsIncRcvd(&status->stats);
if(*status->rxDmaInfo.isReg & status->rxDmaInfo.tcMask) {
*status->rxDmaInfo.ifcReg = status->rxDmaInfo.tcMask;
if(CheckHeader(&status->rxBuffers[status->activeRxBuf].packet))
EnqueueCrcTask(status->crcStatus, status->rxCrcSlot,
status->rxBuffers[status->activeRxBuf].packet.payload,
status->rxBuffers[status->activeRxBuf].packet.header.payloadLength +1,
RxCrcComputedCallback, &status->rxBuffers[status->activeRxBuf]);
else {
StatsIncHdrError(&status->stats, *(uint32_t*)&status->rxBuffers[status->activeRxBuf].packet.header);
status->rxBuffers[status->activeRxBuf].error = 1;
}
} else if(*status->rxDmaInfo.isReg & status->rxDmaInfo.teMask) {
*status->rxDmaInfo.ifcReg = status->rxDmaInfo.teMask;
status->rxBuffers[status->activeRxBuf].error = 1;
}
status->activeRxBuf ^= 1;
DIAG_RX_BUFFER_SWITCH(status->activeRxBuf);
if(status->rxBuffers[status->activeRxBuf].busy)
StatsIncOverrun(&status->stats);
SetupReceive(status);
DIAG_INTERRUPT_OUT();
}
void HandleUsartTxDmaIrq(USARTSTATUS *status)
{
DIAG_INTERRUPT_IN();
if(*status->txDmaInfo.isReg & status->txDmaInfo.tcMask) { // DMA transfer complete
*status->txDmaInfo.ifcReg = status->txDmaInfo.tcMask;
LL_USART_EnableIT_TC(status->usart);
LL_DMA_DisableStream(status->txDmaInfo.dma, status->txDmaInfo.stream);
}
else if(*status->txDmaInfo.isReg & status->txDmaInfo.teMask) {
*status->txDmaInfo.ifcReg = status->txDmaInfo.teMask;
status->txBuffer.error = 1;
StatsIncDmaError(&status->stats);
}
if(*status->txDmaInfo.isReg & status->txDmaInfo.feMask)
*status->txDmaInfo.ifcReg = status->txDmaInfo.feMask;
if(*status->txDmaInfo.isReg & status->txDmaInfo.htMask)
*status->txDmaInfo.ifcReg = status->txDmaInfo.htMask;
if(*status->txDmaInfo.isReg & status->txDmaInfo.dmeMask)
*status->txDmaInfo.ifcReg = status->txDmaInfo.dmeMask;
DIAG_INTERRUPT_OUT();
}
void HandleUsartIrq(USARTSTATUS *status)
{
DIAG_INTERRUPT_IN();
if(LL_USART_IsActiveFlag_IDLE(status->usart) && LL_USART_IsEnabledIT_IDLE(status->usart)) { // receiver idle
LL_USART_ClearFlag_IDLE(status->usart);
uint16_t rcvdLen = status->rxBuffers[status->activeRxBuf].requestedLength - LL_DMA_GetDataLength(status->rxDmaInfo.dma, status->rxDmaInfo.stream);
if(rcvdLen >= sizeof(USARTPACKETHEADER)) {
if(CheckHeader(&status->rxBuffers[status->activeRxBuf].packet)) {
if(rcvdLen >= sizeof(USARTPACKETHEADER) + RoundUpTo4(status->rxBuffers[status->activeRxBuf].packet.header.payloadLength + 1) + sizeof(uint32_t))
LL_DMA_DisableStream(status->rxDmaInfo.dma, status->rxDmaInfo.stream);
else
StatsIncPremature_payload(&status->stats);
} else {
status->rxBuffers[status->activeRxBuf].error = 1;
LL_DMA_DisableStream(status->rxDmaInfo.dma, status->rxDmaInfo.stream);
}
} else
StatsIncPremature_hdr(&status->stats);
}
else if(LL_USART_IsActiveFlag_TC(status->usart) && LL_USART_IsEnabledIT_TC(status->usart)) { // transmission complete
LL_USART_DisableIT_TC(status->usart);
LL_USART_DisableDirectionTx(status->usart); // enforcing an idle frame
LL_USART_EnableDirectionTx(status->usart);
status->txBuffer.busy = 0;
}
DIAG_INTERRUPT_OUT();
}