Initial commit

This commit is contained in:
Attila Body 2021-10-30 21:31:38 +02:00
commit f3d345e2e3
147 changed files with 155315 additions and 0 deletions

View file

@ -0,0 +1,615 @@
/**
******************************************************************************
* @file stm32f4xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs' categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @brief HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup HAL_Private_Constants
* @{
*/
/**
* @brief STM32F4xx HAL Driver version number V1.7.13
*/
#define __STM32F4xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32F4xx_HAL_VERSION_SUB1 (0x07U) /*!< [23:16] sub1 version */
#define __STM32F4xx_HAL_VERSION_SUB2 (0x0DU) /*!< [15:8] sub2 version */
#define __STM32F4xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32F4xx_HAL_VERSION ((__STM32F4xx_HAL_VERSION_MAIN << 24U)\
|(__STM32F4xx_HAL_VERSION_SUB1 << 16U)\
|(__STM32F4xx_HAL_VERSION_SUB2 << 8U )\
|(__STM32F4xx_HAL_VERSION_RC))
#define IDCODE_DEVID_MASK 0x00000FFFU
/* ------------ RCC registers bit address in the alias region ----------- */
#define SYSCFG_OFFSET (SYSCFG_BASE - PERIPH_BASE)
/* --- MEMRMP Register ---*/
/* Alias word address of UFB_MODE bit */
#define MEMRMP_OFFSET SYSCFG_OFFSET
#define UFB_MODE_BIT_NUMBER SYSCFG_MEMRMP_UFB_MODE_Pos
#define UFB_MODE_BB (uint32_t)(PERIPH_BB_BASE + (MEMRMP_OFFSET * 32U) + (UFB_MODE_BIT_NUMBER * 4U))
/* --- CMPCR Register ---*/
/* Alias word address of CMP_PD bit */
#define CMPCR_OFFSET (SYSCFG_OFFSET + 0x20U)
#define CMP_PD_BIT_NUMBER SYSCFG_CMPCR_CMP_PD_Pos
#define CMPCR_CMP_PD_BB (uint32_t)(PERIPH_BB_BASE + (CMPCR_OFFSET * 32U) + (CMP_PD_BIT_NUMBER * 4U))
/* --- MCHDLYCR Register ---*/
/* Alias word address of BSCKSEL bit */
#define MCHDLYCR_OFFSET (SYSCFG_OFFSET + 0x30U)
#define BSCKSEL_BIT_NUMBER SYSCFG_MCHDLYCR_BSCKSEL_Pos
#define MCHDLYCR_BSCKSEL_BB (uint32_t)(PERIPH_BB_BASE + (MCHDLYCR_OFFSET * 32U) + (BSCKSEL_BIT_NUMBER * 4U))
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup HAL_Private_Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup HAL_Exported_Functions HAL Exported Functions
* @{
*/
/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initializes the Flash interface the NVIC allocation and initial clock
configuration. It initializes the systick also when timeout is needed
and the backup domain when enabled.
(+) De-Initializes common part of the HAL.
(+) Configure the time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function is used to initialize the HAL Library; it must be the first
* instruction to be executed in the main program (before to call any other
* HAL function), it performs the following:
* Configure the Flash prefetch, instruction and Data caches.
* Configures the SysTick to generate an interrupt each 1 millisecond,
* which is clocked by the HSI (at this stage, the clock is not yet
* configured and thus the system is running from the internal HSI at 16 MHz).
* Set NVIC Group Priority to 4.
* Calls the HAL_MspInit() callback function defined in user file
* "stm32f4xx_hal_msp.c" to do the global low level hardware initialization
*
* @note SysTick is used as time base for the HAL_Delay() function, the application
* need to ensure that the SysTick time base is always set to 1 millisecond
* to have correct HAL operation.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
/* Configure Flash prefetch, Instruction cache, Data cache */
#if (INSTRUCTION_CACHE_ENABLE != 0U)
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
#endif /* INSTRUCTION_CACHE_ENABLE */
#if (DATA_CACHE_ENABLE != 0U)
__HAL_FLASH_DATA_CACHE_ENABLE();
#endif /* DATA_CACHE_ENABLE */
#if (PREFETCH_ENABLE != 0U)
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif /* PREFETCH_ENABLE */
/* Set Interrupt Group Priority */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
HAL_InitTick(TICK_INT_PRIORITY);
/* Init the low level hardware */
HAL_MspInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the systick.
* This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_APB1_FORCE_RESET();
__HAL_RCC_APB1_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
__HAL_RCC_AHB1_FORCE_RESET();
__HAL_RCC_AHB1_RELEASE_RESET();
__HAL_RCC_AHB2_FORCE_RESET();
__HAL_RCC_AHB2_RELEASE_RESET();
__HAL_RCC_AHB3_FORCE_RESET();
__HAL_RCC_AHB3_RELEASE_RESET();
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
(+) Enable/Disable Debug module during SLEEP mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in SysTick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval Status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief Return tick frequency.
* @retval tick period in Hz
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides minimum delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk;
}
/**
* @brief Returns the HAL revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32F4xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return((DBGMCU->IDCODE) >> 16U);
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}
/**
* @brief Enable the Debug Module during SLEEP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Disable the Debug Module during SLEEP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Enable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Enables the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 2.4 to 3.6 V.
* @retval None
*/
void HAL_EnableCompensationCell(void)
{
*(__IO uint32_t *)CMPCR_CMP_PD_BB = (uint32_t)ENABLE;
}
/**
* @brief Power-down the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 2.4 to 3.6 V.
* @retval None
*/
void HAL_DisableCompensationCell(void)
{
*(__IO uint32_t *)CMPCR_CMP_PD_BB = (uint32_t)DISABLE;
}
/**
* @brief Returns first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return (READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Returns second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Returns third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) ||\
defined(STM32F469xx) || defined(STM32F479xx)
/**
* @brief Enables the Internal FLASH Bank Swapping.
*
* @note This function can be used only for STM32F42xxx/43xxx/469xx/479xx devices.
*
* @note Flash Bank2 mapped at 0x08000000 (and aliased @0x00000000)
* and Flash Bank1 mapped at 0x08100000 (and aliased at 0x00100000)
*
* @retval None
*/
void HAL_EnableMemorySwappingBank(void)
{
*(__IO uint32_t *)UFB_MODE_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables the Internal FLASH Bank Swapping.
*
* @note This function can be used only for STM32F42xxx/43xxx/469xx/479xx devices.
*
* @note The default state : Flash Bank1 mapped at 0x08000000 (and aliased @0x00000000)
* and Flash Bank2 mapped at 0x08100000 (and aliased at 0x00100000)
*
* @retval None
*/
void HAL_DisableMemorySwappingBank(void)
{
*(__IO uint32_t *)UFB_MODE_BB = (uint32_t)DISABLE;
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,505 @@
/**
******************************************************************************
* @file stm32f4xx_hal_cortex.c
* @author MCD Application Team
* @brief CORTEX HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the CORTEX:
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** How to configure Interrupts using CORTEX HAL driver ***
===========================================================
[..]
This section provides functions allowing to configure the NVIC interrupts (IRQ).
The Cortex-M4 exceptions are managed by CMSIS functions.
(#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping()
function according to the following table.
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority().
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ().
(#) please refer to programming manual for details in how to configure priority.
-@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ preemption is no more possible.
The pending IRQ priority will be managed only by the sub priority.
-@- IRQ priority order (sorted by highest to lowest priority):
(+@) Lowest preemption priority
(+@) Lowest sub priority
(+@) Lowest hardware priority (IRQ number)
[..]
*** How to configure Systick using CORTEX HAL driver ***
========================================================
[..]
Setup SysTick Timer for time base.
(+) The HAL_SYSTICK_Config() function calls the SysTick_Config() function which
is a CMSIS function that:
(++) Configures the SysTick Reload register with value passed as function parameter.
(++) Configures the SysTick IRQ priority to the lowest value 0x0F.
(++) Resets the SysTick Counter register.
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
(++) Enables the SysTick Interrupt.
(++) Starts the SysTick Counter.
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
__HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
inside the stm32f4xx_hal_cortex.h file.
(+) You can change the SysTick IRQ priority by calling the
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
(+) To adjust the SysTick time base, use the following formula:
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
(++) Reload Value should not exceed 0xFFFFFF
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup CORTEX CORTEX
* @brief CORTEX HAL module driver
* @{
*/
#ifdef HAL_CORTEX_MODULE_ENABLED
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
Systick functionalities
@endverbatim
* @{
*/
/**
* @brief Sets the priority grouping field (preemption priority and subpriority)
* using the required unlock sequence.
* @param PriorityGroup The priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
* 1 bits for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
* 0 bits for subpriority
* @note When the NVIC_PriorityGroup_0 is selected, IRQ preemption is no more possible.
* The pending IRQ priority will be managed only by the subpriority.
* @retval None
*/
void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */
NVIC_SetPriorityGrouping(PriorityGroup);
}
/**
* @brief Sets the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @param PreemptPriority The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority
* @param SubPriority the subpriority level for the IRQ channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority.
* @retval None
*/
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t prioritygroup = 0x00U;
/* Check the parameters */
assert_param(IS_NVIC_SUB_PRIORITY(SubPriority));
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
prioritygroup = NVIC_GetPriorityGrouping();
NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority));
}
/**
* @brief Enables a device specific interrupt in the NVIC interrupt controller.
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
* function should be called before.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval None
*/
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disables a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval None
*/
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiates a system reset request to reset the MCU.
* @retval None
*/
void HAL_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
{
return SysTick_Config(TicksNumb);
}
/**
* @}
*/
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
* @brief Cortex control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the CORTEX
(NVIC, SYSTICK, MPU) functionalities.
@endverbatim
* @{
*/
#if (__MPU_PRESENT == 1U)
/**
* @brief Disables the MPU
* @retval None
*/
void HAL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable fault exceptions */
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
/* Disable the MPU and clear the control register*/
MPU->CTRL = 0U;
}
/**
* @brief Enable the MPU.
* @param MPU_Control Specifies the control mode of the MPU during hard fault,
* NMI, FAULTMASK and privileged access to the default memory
* This parameter can be one of the following values:
* @arg MPU_HFNMI_PRIVDEF_NONE
* @arg MPU_HARDFAULT_NMI
* @arg MPU_PRIVILEGED_DEFAULT
* @arg MPU_HFNMI_PRIVDEF
* @retval None
*/
void HAL_MPU_Enable(uint32_t MPU_Control)
{
/* Enable the MPU */
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
/* Enable fault exceptions */
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
/* Ensure MPU setting take effects */
__DSB();
__ISB();
}
/**
* @brief Initializes and configures the Region and the memory to be protected.
* @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains
* the initialization and configuration information.
* @retval None
*/
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
if ((MPU_Init->Enable) != RESET)
{
/* Check the parameters */
assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
MPU->RBAR = MPU_Init->BaseAddress;
MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) |
((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) |
((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) |
((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) |
((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) |
((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
}
else
{
MPU->RBAR = 0x00U;
MPU->RASR = 0x00U;
}
}
#endif /* __MPU_PRESENT */
/**
* @brief Gets the priority grouping field from the NVIC Interrupt Controller.
* @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field)
*/
uint32_t HAL_NVIC_GetPriorityGrouping(void)
{
/* Get the PRIGROUP[10:8] field value */
return NVIC_GetPriorityGrouping();
}
/**
* @brief Gets the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @param PriorityGroup the priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
* 1 bits for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
* 0 bits for subpriority
* @param pPreemptPriority Pointer on the Preemptive priority value (starting from 0).
* @param pSubPriority Pointer on the Subpriority value (starting from 0).
* @retval None
*/
void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Get priority for Cortex-M system or device specific interrupts */
NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority);
}
/**
* @brief Sets Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval None
*/
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Gets Pending Interrupt (reads the pending register in the NVIC
* and returns the pending bit for the specified interrupt).
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if pending else 0 */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Clears the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval None
*/
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Clear pending interrupt */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit).
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if active else 0 */
return NVIC_GetActive(IRQn);
}
/**
* @brief Configures the SysTick clock source.
* @param CLKSource specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
{
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}
else
{
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
}
}
/**
* @brief This function handles SYSTICK interrupt request.
* @retval None
*/
void HAL_SYSTICK_IRQHandler(void)
{
HAL_SYSTICK_Callback();
}
/**
* @brief SYSTICK callback.
* @retval None
*/
__weak void HAL_SYSTICK_Callback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SYSTICK_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CORTEX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,315 @@
/**
******************************************************************************
* @file stm32f4xx_hal_dma_ex.c
* @author MCD Application Team
* @brief DMA Extension HAL module driver
* This file provides firmware functions to manage the following
* functionalities of the DMA Extension peripheral:
* + Extended features functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The DMA Extension HAL driver can be used as follows:
(#) Start a multi buffer transfer using the HAL_DMA_MultiBufferStart() function
for polling mode or HAL_DMA_MultiBufferStart_IT() for interrupt mode.
-@- In Memory-to-Memory transfer mode, Multi (Double) Buffer mode is not allowed.
-@- When Multi (Double) Buffer mode is enabled the, transfer is circular by default.
-@- In Multi (Double) buffer mode, it is possible to update the base address for
the AHB memory port on the fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup DMAEx DMAEx
* @brief DMA Extended HAL module driver
* @{
*/
#ifdef HAL_DMA_MODULE_ENABLED
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private Constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup DMAEx_Private_Functions
* @{
*/
static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @addtogroup DMAEx_Exported_Functions
* @{
*/
/** @addtogroup DMAEx_Exported_Functions_Group1
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the source, destination address and data length and
Start MultiBuffer DMA transfer
(+) Configure the source, destination address and data length and
Start MultiBuffer DMA transfer with interrupt
(+) Change on the fly the memory0 or memory1 address.
@endverbatim
* @{
*/
/**
* @brief Starts the multi_buffer DMA Transfer.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param SecondMemAddress The second memory Buffer address in case of multi buffer Transfer
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Memory-to-memory transfer not supported in double buffering mode */
if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY)
{
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
/* Enable the double buffer mode */
hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM;
/* Configure DMA Stream destination address */
hdma->Instance->M1AR = SecondMemAddress;
/* Configure the source, destination address and the data length */
DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Return error status */
status = HAL_BUSY;
}
}
return status;
}
/**
* @brief Starts the multi_buffer DMA Transfer with interrupt enabled.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param SecondMemAddress The second memory Buffer address in case of multi buffer Transfer
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Memory-to-memory transfer not supported in double buffering mode */
if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY)
{
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Check callback functions */
if ((NULL == hdma->XferCpltCallback) || (NULL == hdma->XferM1CpltCallback) || (NULL == hdma->XferErrorCallback))
{
hdma->ErrorCode = HAL_DMA_ERROR_PARAM;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
/* Initialize the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Enable the Double buffer mode */
hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM;
/* Configure DMA Stream destination address */
hdma->Instance->M1AR = SecondMemAddress;
/* Configure the source, destination address and the data length */
DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Clear all flags */
__HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
__HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
__HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
__HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma));
__HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma));
/* Enable Common interrupts*/
hdma->Instance->CR |= DMA_IT_TC | DMA_IT_TE | DMA_IT_DME;
hdma->Instance->FCR |= DMA_IT_FE;
if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL))
{
hdma->Instance->CR |= DMA_IT_HT;
}
/* Enable the peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdma);
/* Return error status */
status = HAL_BUSY;
}
return status;
}
/**
* @brief Change the memory0 or memory1 address on the fly.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param Address The new address
* @param memory the memory to be changed, This parameter can be one of
* the following values:
* MEMORY0 /
* MEMORY1
* @note The MEMORY0 address can be changed only when the current transfer use
* MEMORY1 and the MEMORY1 address can be changed only when the current
* transfer use MEMORY0.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory)
{
if(memory == MEMORY0)
{
/* change the memory0 address */
hdma->Instance->M0AR = Address;
}
else
{
/* change the memory1 address */
hdma->Instance->M1AR = Address;
}
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup DMAEx_Private_Functions
* @{
*/
/**
* @brief Set the DMA Transfer parameter.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
/* Configure DMA Stream data length */
hdma->Instance->NDTR = DataLength;
/* Peripheral to Memory */
if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
{
/* Configure DMA Stream destination address */
hdma->Instance->PAR = DstAddress;
/* Configure DMA Stream source address */
hdma->Instance->M0AR = SrcAddress;
}
/* Memory to Peripheral */
else
{
/* Configure DMA Stream source address */
hdma->Instance->PAR = SrcAddress;
/* Configure DMA Stream destination address */
hdma->Instance->M0AR = DstAddress;
}
}
/**
* @}
*/
#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,549 @@
/**
******************************************************************************
* @file stm32f4xx_hal_exti.c
* @author MCD Application Team
* @brief EXTI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Extended Interrupts and events controller (EXTI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
@verbatim
==============================================================================
##### EXTI Peripheral features #####
==============================================================================
[..]
(+) Each Exti line can be configured within this driver.
(+) Exti line can be configured in 3 different modes
(++) Interrupt
(++) Event
(++) Both of them
(+) Configurable Exti lines can be configured with 3 different triggers
(++) Rising
(++) Falling
(++) Both of them
(+) When set in interrupt mode, configurable Exti lines have two different
interrupts pending registers which allow to distinguish which transition
occurs:
(++) Rising edge pending interrupt
(++) Falling
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
be selected through multiplexer.
##### How to use this driver #####
==============================================================================
[..]
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
(++) Choose the interrupt line number by setting "Line" member from
EXTI_ConfigTypeDef structure.
(++) Configure the interrupt and/or event mode using "Mode" member from
EXTI_ConfigTypeDef structure.
(++) For configurable lines, configure rising and/or falling trigger
"Trigger" member from EXTI_ConfigTypeDef structure.
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
member from GPIO_InitTypeDef structure.
(#) Get current Exti configuration of a dedicated line using
HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
(++) Provide exiting handle as first parameter.
(++) Provide which callback will be registered using one value from
EXTI_CallbackIDTypeDef.
(++) Provide callback function pointer.
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rule:
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
* of bounds [0,3] in following API :
* HAL_EXTI_SetConfigLine
* HAL_EXTI_GetConfigLine
* HAL_EXTI_ClearConfigLine
*/
#ifdef HAL_EXTI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_Exported_Functions
* @{
*/
/** @addtogroup EXTI_Exported_Functions_Group1
* @brief Configuration functions
*
@verbatim
===============================================================================
##### Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Set configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on EXTI configuration to be set.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
/* Assign line number to handle */
hexti->Line = pExtiConfig->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Configure triggers for configurable lines */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
/* Configure rising trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
{
EXTI->RTSR |= maskline;
}
else
{
EXTI->RTSR &= ~maskline;
}
/* Configure falling trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
{
EXTI->FTSR |= maskline;
}
else
{
EXTI->FTSR &= ~maskline;
}
/* Configure gpio port selection in case of gpio exti line */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
/* Configure interrupt mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
{
EXTI->IMR |= maskline;
}
else
{
EXTI->IMR &= ~maskline;
}
/* Configure event mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
{
EXTI->EMR |= maskline;
}
else
{
EXTI->EMR &= ~maskline;
}
return HAL_OK;
}
/**
* @brief Get configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on structure to store Exti configuration.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* Store handle line number to configuration structure */
pExtiConfig->Line = hexti->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Get core mode : interrupt */
/* Check if selected line is enable */
if ((EXTI->IMR & maskline) != 0x00u)
{
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
}
else
{
pExtiConfig->Mode = EXTI_MODE_NONE;
}
/* Get event mode */
/* Check if selected line is enable */
if ((EXTI->EMR & maskline) != 0x00u)
{
pExtiConfig->Mode |= EXTI_MODE_EVENT;
}
/* Get default Trigger and GPIOSel configuration */
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
pExtiConfig->GPIOSel = 0x00u;
/* 2] Get trigger for configurable lines : rising */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
/* Check if configuration of selected line is enable */
if ((EXTI->RTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
}
/* Get falling configuration */
/* Check if configuration of selected line is enable */
if ((EXTI->FTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
}
/* Get Gpio port selection for gpio lines */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
pExtiConfig->GPIOSel = ((regval << (SYSCFG_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24);
}
}
return HAL_OK;
}
/**
* @brief Clear whole configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Clear interrupt mode */
EXTI->IMR = (EXTI->IMR & ~maskline);
/* 2] Clear event mode */
EXTI->EMR = (EXTI->EMR & ~maskline);
/* 3] Clear triggers in case of configurable lines */
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
{
EXTI->RTSR = (EXTI->RTSR & ~maskline);
EXTI->FTSR = (EXTI->FTSR & ~maskline);
/* Get Gpio port selection for gpio lines */
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
return HAL_OK;
}
/**
* @brief Register callback for a dedicated Exti line.
* @param hexti Exti handle.
* @param CallbackID User callback identifier.
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
* @param pPendingCbfn function pointer to be stored as callback.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void))
{
HAL_StatusTypeDef status = HAL_OK;
switch (CallbackID)
{
case HAL_EXTI_COMMON_CB_ID:
hexti->PendingCallback = pPendingCbfn;
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Store line number as handle private field.
* @param hexti Exti handle.
* @param ExtiLine Exti line number.
* This parameter can be from 0 to @ref EXTI_LINE_NB.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(ExtiLine));
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
else
{
/* Store line number as handle private field */
hexti->Line = ExtiLine;
return HAL_OK;
}
}
/**
* @}
*/
/** @addtogroup EXTI_Exported_Functions_Group2
* @brief EXTI IO functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Handle EXTI interrupt request.
* @param hexti Exti handle.
* @retval none.
*/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t maskline;
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get pending bit */
regval = (EXTI->PR & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
EXTI->PR = maskline;
/* Call callback */
if (hexti->PendingCallback != NULL)
{
hexti->PendingCallback();
}
}
}
/**
* @brief Get interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be checked.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval 1 if interrupt is pending else 0.
*/
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* return 1 if bit is set else 0 */
regval = ((EXTI->PR & maskline) >> linepos);
return regval;
}
/**
* @brief Clear interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be clear.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval None.
*/
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Clear Pending bit */
EXTI->PR = maskline;
}
/**
* @brief Generate a software interrupt for a dedicated line.
* @param hexti Exti handle.
* @retval None.
*/
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Generate Software interrupt */
EXTI->SWIER = maskline;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_EXTI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,778 @@
/**
******************************************************************************
* @file stm32f4xx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral Errors functions
*
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch and cache lines.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Read / write protections
(+) Prefetch on I-Code
(+) 64 cache lines of 128 bits on I-Code
(+) 8 cache lines of 128 bits on D-Code
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32F4xx devices.
(#) FLASH Memory IO Programming functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Program functions: byte, half word, word and double word
(++) There Two modes of programming :
(+++) Polling mode using HAL_FLASH_Program() function
(+++) Interrupt mode using HAL_FLASH_Program_IT() function
(#) Interrupts and flags management functions :
(++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler()
(++) Wait for last FLASH operation according to its status
(++) Get error flag status by calling HAL_SetErrorCode()
[..]
In addition to these functions, this driver includes a set of macros allowing
to handle the following operations:
(+) Set the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the Instruction cache and the Data cache
(+) Reset the Instruction cache and the Data cache
(+) Enable/Disable the FLASH interrupts
(+) Monitor the FLASH flags status
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FLASH_Private_Constants
* @{
*/
#define FLASH_TIMEOUT_VALUE 50000U /* 50 s */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup FLASH_Private_Variables
* @{
*/
/* Variable used for Erase sectors under interruption */
FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/* Program operations */
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data);
static void FLASH_Program_Word(uint32_t Address, uint32_t Data);
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
static void FLASH_Program_Byte(uint32_t Address, uint8_t Data);
static void FLASH_SetErrorCode(void);
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
===============================================================================
##### Programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the FLASH
program operations.
@endverbatim
* @{
*/
/**
* @brief Program byte, halfword, word or double word at a specified address
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
if(TypeProgram == FLASH_TYPEPROGRAM_BYTE)
{
/*Program byte (8-bit) at a specified address.*/
FLASH_Program_Byte(Address, (uint8_t) Data);
}
else if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(Address, (uint16_t) Data);
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
/*Program word (32-bit) at a specified address.*/
FLASH_Program_Word(Address, (uint32_t) Data);
}
else
{
/*Program double word (64-bit) at a specified address.*/
FLASH_Program_DoubleWord(Address, Data);
}
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
FLASH->CR &= (~FLASH_CR_PG);
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Program byte, halfword, word or double word at a specified address with interrupt enabled.
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
/* Enable End of FLASH Operation interrupt */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP);
/* Enable Error source interrupt */
__HAL_FLASH_ENABLE_IT(FLASH_IT_ERR);
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAM;
pFlash.Address = Address;
if(TypeProgram == FLASH_TYPEPROGRAM_BYTE)
{
/*Program byte (8-bit) at a specified address.*/
FLASH_Program_Byte(Address, (uint8_t) Data);
}
else if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(Address, (uint16_t) Data);
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
/*Program word (32-bit) at a specified address.*/
FLASH_Program_Word(Address, (uint32_t) Data);
}
else
{
/*Program double word (64-bit) at a specified address.*/
FLASH_Program_DoubleWord(Address, Data);
}
return status;
}
/**
* @brief This function handles FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t addresstmp = 0U;
/* Check FLASH operation error flags */
#if defined(FLASH_SR_RDERR)
if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR | FLASH_FLAG_RDERR)) != RESET)
#else
if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR)) != RESET)
#endif /* FLASH_SR_RDERR */
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_SECTERASE)
{
/*return the faulty sector*/
addresstmp = pFlash.Sector;
pFlash.Sector = 0xFFFFFFFFU;
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/*return the faulty bank*/
addresstmp = pFlash.Bank;
}
else
{
/*return the faulty address*/
addresstmp = pFlash.Address;
}
/*Save the Error code*/
FLASH_SetErrorCode();
/* FLASH error interrupt user callback */
HAL_FLASH_OperationErrorCallback(addresstmp);
/*Stop the procedure ongoing*/
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
/* Check FLASH End of Operation flag */
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP) != RESET)
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
if(pFlash.ProcedureOnGoing == FLASH_PROC_SECTERASE)
{
/*Nb of sector to erased can be decreased*/
pFlash.NbSectorsToErase--;
/* Check if there are still sectors to erase*/
if(pFlash.NbSectorsToErase != 0U)
{
addresstmp = pFlash.Sector;
/*Indicate user which sector has been erased*/
HAL_FLASH_EndOfOperationCallback(addresstmp);
/*Increment sector number*/
pFlash.Sector++;
addresstmp = pFlash.Sector;
FLASH_Erase_Sector(addresstmp, pFlash.VoltageForErase);
}
else
{
/*No more sectors to Erase, user callback can be called.*/
/*Reset Sector and stop Erase sectors procedure*/
pFlash.Sector = addresstmp = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* Flush the caches to be sure of the data consistency */
FLASH_FlushCaches() ;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(addresstmp);
}
}
else
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* MassErase ended. Return the selected bank */
/* Flush the caches to be sure of the data consistency */
FLASH_FlushCaches() ;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(pFlash.Bank);
}
else
{
/*Program ended. Return the selected address*/
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
{
/* Operation is completed, disable the PG, SER, SNB and MER Bits */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_SER | FLASH_CR_SNB | FLASH_MER_BIT));
/* Disable End of FLASH Operation interrupt */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP);
/* Disable Error source interrupt */
__HAL_FLASH_DISABLE_IT(FLASH_IT_ERR);
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Mass Erase: Bank number which has been requested to erase
* Sectors Erase: Sector which has been erased
* (if 0xFFFFFFFFU, it means that all the selected sectors have been erased)
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Mass Erase: Bank number which has been requested to erase
* Sectors Erase: Sector number which returned an error
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* Verify Flash is unlocked */
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Locks the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
/* Set the LOCK Bit to lock the FLASH Registers access */
FLASH->CR |= FLASH_CR_LOCK;
return HAL_OK;
}
/**
* @brief Unlock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
if((FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) != RESET)
{
/* Authorizes the Option Byte register programming */
FLASH->OPTKEYR = FLASH_OPT_KEY1;
FLASH->OPTKEYR = FLASH_OPT_KEY2;
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Lock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
/* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */
FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK;
return HAL_OK;
}
/**
* @brief Launch the option byte loading.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
{
/* Set the OPTSTRT bit in OPTCR register */
*(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= FLASH_OPTCR_OPTSTRT;
/* Wait for last operation to be completed */
return(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE));
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral Errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permits to get in run-time Errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode: The returned value can be a combination of:
* @arg HAL_FLASH_ERROR_RD: FLASH Read Protection error flag (PCROP)
* @arg HAL_FLASH_ERROR_PGS: FLASH Programming Sequence error flag
* @arg HAL_FLASH_ERROR_PGP: FLASH Programming Parallelism error flag
* @arg HAL_FLASH_ERROR_PGA: FLASH Programming Alignment error flag
* @arg HAL_FLASH_ERROR_WRP: FLASH Write protected error flag
* @arg HAL_FLASH_ERROR_OPERATION: FLASH operation Error flag
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout maximum flash operationtimeout
* @retval HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
uint32_t tickstart = 0U;
/* Clear Error Code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
/* Get tick */
tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) != RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP) != RESET)
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
#if defined(FLASH_SR_RDERR)
if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR | FLASH_FLAG_RDERR)) != RESET)
#else
if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR)) != RESET)
#endif /* FLASH_SR_RDERR */
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* If there is no error flag set */
return HAL_OK;
}
/**
* @brief Program a double word (64-bit) at a specified address.
* @note This function must be used when the device voltage range is from
* 2.7V to 3.6V and Vpp in the range 7V to 9V.
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data)
{
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* If the previous operation is completed, proceed to program the new data */
CLEAR_BIT(FLASH->CR, FLASH_CR_PSIZE);
FLASH->CR |= FLASH_PSIZE_DOUBLE_WORD;
FLASH->CR |= FLASH_CR_PG;
/* Program first word */
*(__IO uint32_t*)Address = (uint32_t)Data;
/* Barrier to ensure programming is performed in 2 steps, in right order
(independently of compiler optimization behavior) */
__ISB();
/* Program second word */
*(__IO uint32_t*)(Address+4) = (uint32_t)(Data >> 32);
}
/**
* @brief Program word (32-bit) at a specified address.
* @note This function must be used when the device voltage range is from
* 2.7V to 3.6V.
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_Word(uint32_t Address, uint32_t Data)
{
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* If the previous operation is completed, proceed to program the new data */
CLEAR_BIT(FLASH->CR, FLASH_CR_PSIZE);
FLASH->CR |= FLASH_PSIZE_WORD;
FLASH->CR |= FLASH_CR_PG;
*(__IO uint32_t*)Address = Data;
}
/**
* @brief Program a half-word (16-bit) at a specified address.
* @note This function must be used when the device voltage range is from
* 2.1V to 3.6V.
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* If the previous operation is completed, proceed to program the new data */
CLEAR_BIT(FLASH->CR, FLASH_CR_PSIZE);
FLASH->CR |= FLASH_PSIZE_HALF_WORD;
FLASH->CR |= FLASH_CR_PG;
*(__IO uint16_t*)Address = Data;
}
/**
* @brief Program byte (8-bit) at a specified address.
* @note This function must be used when the device voltage range is from
* 1.8V to 3.6V.
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param Address specifies the address to be programmed.
* @param Data specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_Byte(uint32_t Address, uint8_t Data)
{
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* If the previous operation is completed, proceed to program the new data */
CLEAR_BIT(FLASH->CR, FLASH_CR_PSIZE);
FLASH->CR |= FLASH_PSIZE_BYTE;
FLASH->CR |= FLASH_CR_PG;
*(__IO uint8_t*)Address = Data;
}
/**
* @brief Set the specific FLASH error flag.
* @retval None
*/
static void FLASH_SetErrorCode(void)
{
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
/* Clear FLASH write protection error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_WRPERR);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGAERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PGA;
/* Clear FLASH Programming alignment error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_PGAERR);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGPERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PGP;
/* Clear FLASH Programming parallelism error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_PGPERR);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGSERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PGS;
/* Clear FLASH Programming sequence error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_PGSERR);
}
#if defined(FLASH_SR_RDERR)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_RDERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_RD;
/* Clear FLASH Proprietary readout protection error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_RDERR);
}
#endif /* FLASH_SR_RDERR */
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPERR) != RESET)
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_OPERATION;
/* Clear FLASH Operation error pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPERR);
}
}
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,175 @@
/**
******************************************************************************
* @file stm32f4xx_hal_flash_ramfunc.c
* @author MCD Application Team
* @brief FLASH RAMFUNC module driver.
* This file provides a FLASH firmware functions which should be
* executed from internal SRAM
* + Stop/Start the flash interface while System Run
* + Enable/Disable the flash sleep while System Run
@verbatim
==============================================================================
##### APIs executed from Internal RAM #####
==============================================================================
[..]
*** ARM Compiler ***
--------------------
[..] RAM functions are defined using the toolchain options.
Functions that are be executed in RAM should reside in a separate
source module. Using the 'Options for File' dialog you can simply change
the 'Code / Const' area of a module to a memory space in physical RAM.
Available memory areas are declared in the 'Target' tab of the
Options for Target' dialog.
*** ICCARM Compiler ***
-----------------------
[..] RAM functions are defined using a specific toolchain keyword "__ramfunc".
*** GNU Compiler ***
--------------------
[..] RAM functions are defined using a specific toolchain attribute
"__attribute__((section(".RamFunc")))".
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup FLASH_RAMFUNC FLASH RAMFUNC
* @brief FLASH functions executed from RAM
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
#if defined(STM32F410Tx) || defined(STM32F410Cx) || defined(STM32F410Rx) || defined(STM32F411xE) || defined(STM32F446xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || \
defined(STM32F412Rx) || defined(STM32F412Cx)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FLASH_RAMFUNC_Exported_Functions FLASH RAMFUNC Exported Functions
* @{
*/
/** @defgroup FLASH_RAMFUNC_Exported_Functions_Group1 Peripheral features functions executed from internal RAM
* @brief Peripheral Extended features functions
*
@verbatim
===============================================================================
##### ramfunc functions #####
===============================================================================
[..]
This subsection provides a set of functions that should be executed from RAM
transfers.
@endverbatim
* @{
*/
/**
* @brief Stop the flash interface while System Run
* @note This mode is only available for STM32F41xxx/STM32F446xx devices.
* @note This mode couldn't be set while executing with the flash itself.
* It should be done with specific routine executed from RAM.
* @retval HAL status
*/
__RAM_FUNC HAL_StatusTypeDef HAL_FLASHEx_StopFlashInterfaceClk(void)
{
/* Enable Power ctrl clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* Stop the flash interface while System Run */
SET_BIT(PWR->CR, PWR_CR_FISSR);
return HAL_OK;
}
/**
* @brief Start the flash interface while System Run
* @note This mode is only available for STM32F411xx/STM32F446xx devices.
* @note This mode couldn't be set while executing with the flash itself.
* It should be done with specific routine executed from RAM.
* @retval HAL status
*/
__RAM_FUNC HAL_StatusTypeDef HAL_FLASHEx_StartFlashInterfaceClk(void)
{
/* Enable Power ctrl clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* Start the flash interface while System Run */
CLEAR_BIT(PWR->CR, PWR_CR_FISSR);
return HAL_OK;
}
/**
* @brief Enable the flash sleep while System Run
* @note This mode is only available for STM32F41xxx/STM32F446xx devices.
* @note This mode could n't be set while executing with the flash itself.
* It should be done with specific routine executed from RAM.
* @retval HAL status
*/
__RAM_FUNC HAL_StatusTypeDef HAL_FLASHEx_EnableFlashSleepMode(void)
{
/* Enable Power ctrl clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable the flash sleep while System Run */
SET_BIT(PWR->CR, PWR_CR_FMSSR);
return HAL_OK;
}
/**
* @brief Disable the flash sleep while System Run
* @note This mode is only available for STM32F41xxx/STM32F446xx devices.
* @note This mode couldn't be set while executing with the flash itself.
* It should be done with specific routine executed from RAM.
* @retval HAL status
*/
__RAM_FUNC HAL_StatusTypeDef HAL_FLASHEx_DisableFlashSleepMode(void)
{
/* Enable Power ctrl clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* Disable the flash sleep while System Run */
CLEAR_BIT(PWR->CR, PWR_CR_FMSSR);
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F410xx || STM32F411xE || STM32F446xx || STM32F412Zx || STM32F412Vx || STM32F412Rx || STM32F412Cx */
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,534 @@
/**
******************************************************************************
* @file stm32f4xx_hal_gpio.c
* @author MCD Application Team
* @brief GPIO HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
@verbatim
==============================================================================
##### GPIO Peripheral features #####
==============================================================================
[..]
Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
in several modes:
(+) Input mode
(+) Analog mode
(+) Output mode
(+) Alternate function mode
(+) External interrupt/event lines
[..]
During and just after reset, the alternate functions and external interrupt
lines are not active and the I/O ports are configured in input floating mode.
[..]
All GPIO pins have weak internal pull-up and pull-down resistors, which can be
activated or not.
[..]
In Output or Alternate mode, each IO can be configured on open-drain or push-pull
type and the IO speed can be selected depending on the VDD value.
[..]
All ports have external interrupt/event capability. To use external interrupt
lines, the port must be configured in input mode. All available GPIO pins are
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
[..]
The external interrupt/event controller consists of up to 23 edge detectors
(16 lines are connected to GPIO) for generating event/interrupt requests (each
input line can be independently configured to select the type (interrupt or event)
and the corresponding trigger event (rising or falling or both). Each line can
also be masked independently.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE().
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.
(++) In case of Output or alternate function mode selection: the speed is
configured through "Speed" member from GPIO_InitTypeDef structure.
(++) In alternate mode is selection, the alternate function connected to the IO
is configured through "Alternate" member from GPIO_InitTypeDef structure.
(++) Analog mode is required when a pin is to be used as ADC channel
or DAC output.
(++) In case of external interrupt/event selection the "Mode" member from
GPIO_InitTypeDef structure select the type (interrupt or event) and
the corresponding trigger event (rising or falling or both).
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
HAL_NVIC_EnableIRQ().
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
(#) To set/reset the level of a pin configured in output mode use
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode (except JTAG
pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general purpose PH0 and PH1, respectively, when the HSE oscillator is off.
The HSE has priority over the GPIO function.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup GPIO GPIO
* @brief GPIO HAL module driver
* @{
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
#define GPIO_NUMBER 16U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
* @{
*/
/** @defgroup GPIO_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to initialize and de-initialize the GPIOs
to be ready for use.
@endverbatim
* @{
*/
/**
* @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init.
* @param GPIOx where x can be (A..K) to select the GPIO peripheral for STM32F429X device or
* x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.
* @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains
* the configuration information for the specified GPIO peripheral.
* @retval None
*/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
{
uint32_t position;
uint32_t ioposition = 0x00U;
uint32_t iocurrent = 0x00U;
uint32_t temp = 0x00U;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
/* Configure the port pins */
for(position = 0U; position < GPIO_NUMBER; position++)
{
/* Get the IO position */
ioposition = 0x01U << position;
/* Get the current IO position */
iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;
if(iocurrent == ioposition)
{
/*--------------------- GPIO Mode Configuration ------------------------*/
/* In case of Output or Alternate function mode selection */
if(((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) || \
(GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
{
/* Check the Speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
/* Configure the IO Speed */
temp = GPIOx->OSPEEDR;
temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2U));
temp |= (GPIO_Init->Speed << (position * 2U));
GPIOx->OSPEEDR = temp;
/* Configure the IO Output Type */
temp = GPIOx->OTYPER;
temp &= ~(GPIO_OTYPER_OT_0 << position) ;
temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position);
GPIOx->OTYPER = temp;
}
if((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG)
{
/* Check the parameters */
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
/* Activate the Pull-up or Pull down resistor for the current IO */
temp = GPIOx->PUPDR;
temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2U));
temp |= ((GPIO_Init->Pull) << (position * 2U));
GPIOx->PUPDR = temp;
}
/* In case of Alternate function mode selection */
if((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
{
/* Check the Alternate function parameter */
assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
/* Configure Alternate function mapped with the current IO */
temp = GPIOx->AFR[position >> 3U];
temp &= ~(0xFU << ((uint32_t)(position & 0x07U) * 4U)) ;
temp |= ((uint32_t)(GPIO_Init->Alternate) << (((uint32_t)position & 0x07U) * 4U));
GPIOx->AFR[position >> 3U] = temp;
}
/* Configure IO Direction mode (Input, Output, Alternate or Analog) */
temp = GPIOx->MODER;
temp &= ~(GPIO_MODER_MODER0 << (position * 2U));
temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2U));
GPIOx->MODER = temp;
/*--------------------- EXTI Mode Configuration ------------------------*/
/* Configure the External Interrupt or event for the current IO */
if((GPIO_Init->Mode & EXTI_MODE) != 0x00U)
{
/* Enable SYSCFG Clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
temp = SYSCFG->EXTICR[position >> 2U];
temp &= ~(0x0FU << (4U * (position & 0x03U)));
temp |= ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4U * (position & 0x03U)));
SYSCFG->EXTICR[position >> 2U] = temp;
/* Clear EXTI line configuration */
temp = EXTI->IMR;
temp &= ~((uint32_t)iocurrent);
if((GPIO_Init->Mode & EXTI_IT) != 0x00U)
{
temp |= iocurrent;
}
EXTI->IMR = temp;
temp = EXTI->EMR;
temp &= ~((uint32_t)iocurrent);
if((GPIO_Init->Mode & EXTI_EVT) != 0x00U)
{
temp |= iocurrent;
}
EXTI->EMR = temp;
/* Clear Rising Falling edge configuration */
temp = EXTI->RTSR;
temp &= ~((uint32_t)iocurrent);
if((GPIO_Init->Mode & TRIGGER_RISING) != 0x00U)
{
temp |= iocurrent;
}
EXTI->RTSR = temp;
temp = EXTI->FTSR;
temp &= ~((uint32_t)iocurrent);
if((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00U)
{
temp |= iocurrent;
}
EXTI->FTSR = temp;
}
}
}
}
/**
* @brief De-initializes the GPIOx peripheral registers to their default reset values.
* @param GPIOx where x can be (A..K) to select the GPIO peripheral for STM32F429X device or
* x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
{
uint32_t position;
uint32_t ioposition = 0x00U;
uint32_t iocurrent = 0x00U;
uint32_t tmp = 0x00U;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
/* Configure the port pins */
for(position = 0U; position < GPIO_NUMBER; position++)
{
/* Get the IO position */
ioposition = 0x01U << position;
/* Get the current IO position */
iocurrent = (GPIO_Pin) & ioposition;
if(iocurrent == ioposition)
{
/*------------------------- EXTI Mode Configuration --------------------*/
tmp = SYSCFG->EXTICR[position >> 2U];
tmp &= (0x0FU << (4U * (position & 0x03U)));
if(tmp == ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4U * (position & 0x03U))))
{
/* Clear EXTI line configuration */
EXTI->IMR &= ~((uint32_t)iocurrent);
EXTI->EMR &= ~((uint32_t)iocurrent);
/* Clear Rising Falling edge configuration */
EXTI->RTSR &= ~((uint32_t)iocurrent);
EXTI->FTSR &= ~((uint32_t)iocurrent);
/* Configure the External Interrupt or event for the current IO */
tmp = 0x0FU << (4U * (position & 0x03U));
SYSCFG->EXTICR[position >> 2U] &= ~tmp;
}
/*------------------------- GPIO Mode Configuration --------------------*/
/* Configure IO Direction in Input Floating Mode */
GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2U));
/* Configure the default Alternate Function in current IO */
GPIOx->AFR[position >> 3U] &= ~(0xFU << ((uint32_t)(position & 0x07U) * 4U)) ;
/* Deactivate the Pull-up and Pull-down resistor for the current IO */
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2U));
/* Configure the default value IO Output Type */
GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ;
/* Configure the default value for IO Speed */
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2U));
}
}
}
/**
* @}
*/
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
* @brief GPIO Read and Write
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Reads the specified input port pin.
* @param GPIOx where x can be (A..K) to select the GPIO peripheral for STM32F429X device or
* x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.
* @param GPIO_Pin specifies the port bit to read.
* This parameter can be GPIO_PIN_x where x can be (0..15).
* @retval The input port pin value.
*/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
GPIO_PinState bitstatus;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
if((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
{
bitstatus = GPIO_PIN_SET;
}
else
{
bitstatus = GPIO_PIN_RESET;
}
return bitstatus;
}
/**
* @brief Sets or clears the selected data port bit.
*
* @note This function uses GPIOx_BSRR register to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
*
* @param GPIOx where x can be (A..K) to select the GPIO peripheral for STM32F429X device or
* x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @param PinState specifies the value to be written to the selected bit.
* This parameter can be one of the GPIO_PinState enum values:
* @arg GPIO_PIN_RESET: to clear the port pin
* @arg GPIO_PIN_SET: to set the port pin
* @retval None
*/
void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if(PinState != GPIO_PIN_RESET)
{
GPIOx->BSRR = GPIO_Pin;
}
else
{
GPIOx->BSRR = (uint32_t)GPIO_Pin << 16U;
}
}
/**
* @brief Toggles the specified GPIO pins.
* @param GPIOx Where x can be (A..K) to select the GPIO peripheral for STM32F429X device or
* x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.
* @param GPIO_Pin Specifies the pins to be toggled.
* @retval None
*/
void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
uint32_t odr;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* get current Ouput Data Register value */
odr = GPIOx->ODR;
/* Set selected pins that were at low level, and reset ones that were high */
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
}
/**
* @brief Locks GPIO Pins configuration registers.
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
* @note The configuration of the locked GPIO pins can no longer be modified
* until the next reset.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F4 family
* @param GPIO_Pin specifies the port bit to be locked.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = GPIO_LCKR_LCKK;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Apply lock key write sequence */
tmp |= GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Read LCKR register. This read is mandatory to complete key lock sequence */
tmp = GPIOx->LCKR;
/* Read again in order to confirm lock is active */
if((GPIOx->LCKR & GPIO_LCKR_LCKK) != RESET)
{
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief This function handles EXTI interrupt request.
* @param GPIO_Pin Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
{
/* EXTI line interrupt detected */
if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET)
{
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
HAL_GPIO_EXTI_Callback(GPIO_Pin);
}
}
/**
* @brief EXTI line detection callbacks.
* @param GPIO_Pin Specifies the pins connected EXTI line
* @retval None
*/
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,575 @@
/**
******************************************************************************
* @file stm32f4xx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup PWR PWR
* @brief PWR HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup PWR_Private_Constants
* @{
*/
/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
* @{
*/
#define PVD_MODE_IT 0x00010000U
#define PVD_MODE_EVT 0x00020000U
#define PVD_RISING_EDGE 0x00000001U
#define PVD_FALLING_EDGE 0x00000002U
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
After reset, the backup domain (RTC registers, RTC backup data
registers and backup SRAM) is protected against possible unwanted
write accesses.
To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
__HAL_RCC_PWR_CLK_ENABLE() macro.
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the HAL PWR peripheral registers to their default reset values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
__HAL_RCC_PWR_FORCE_RESET();
__HAL_RCC_PWR_RELEASE_RESET();
}
/**
* @brief Enables access to the backup domain (RTC registers, RTC
* backup data registers and backup SRAM).
* @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @note The following sequence is required to bypass the delay between
* DBP bit programming and the effective enabling of the backup domain.
* Please check the Errata Sheet for more details under "Possible delay
* in backup domain protection disabling/enabling after programming the
* DBP bit" section.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
__IO uint32_t dummyread;
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
dummyread = PWR->CR;
UNUSED(dummyread);
}
/**
* @brief Disables access to the backup domain (RTC registers, RTC
* backup data registers and backup SRAM).
* @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @note The following sequence is required to bypass the delay between
* DBP bit programming and the effective disabling of the backup domain.
* Please check the Errata Sheet for more details under "Possible delay
* in backup domain protection disabling/enabling after programming the
* DBP bit" section.
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
__IO uint32_t dummyread;
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
dummyread = PWR->CR;
UNUSED(dummyread);
}
/**
* @}
*/
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
*** PVD configuration ***
=========================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a
threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled. This is done through
__HAL_PWR_PVD_EXTI_ENABLE_IT() macro.
(+) The PVD is stopped in Standby mode.
*** Wake-up pin configuration ***
================================
[..]
(+) Wake-up pin is used to wake up the system from Standby mode. This pin is
forced in input pull-down configuration and is active on rising edges.
(+) There is one Wake-up pin: Wake-up Pin 1 on PA.00.
(++) For STM32F446xx there are two Wake-Up pins: Pin1 on PA.00 and Pin2 on PC.13
(++) For STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx there are three Wake-Up pins: Pin1 on PA.00, Pin2 on PC.00 and Pin3 on PC.01
*** Low Power modes configuration ***
=====================================
[..]
The devices feature 3 low-power modes:
(+) Sleep mode: Cortex-M4 core stopped, peripherals kept running.
(+) Stop mode: all clocks are stopped, regulator running, regulator
in low power mode
(+) Standby mode: 1.2V domain powered off.
*** Sleep mode ***
==================
[..]
(+) Entry:
The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI)
functions with
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
-@@- The Regulator parameter is not used for the STM32F4 family
and is kept as parameter just to maintain compatibility with the
lower power families (STM32L).
(+) Exit:
Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
*** Stop mode ***
=================
[..]
In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI,
and the HSE RC oscillators are disabled. Internal SRAM and register contents
are preserved.
The voltage regulator can be configured either in normal or low-power mode.
To minimize the consumption In Stop mode, FLASH can be powered off before
entering the Stop mode using the HAL_PWREx_EnableFlashPowerDown() function.
It can be switched on again by software after exiting the Stop mode using
the HAL_PWREx_DisableFlashPowerDown() function.
(+) Entry:
The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON)
function with:
(++) Main regulator ON.
(++) Low Power regulator ON.
(+) Exit:
Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
*** Standby mode ***
====================
[..]
(+)
The Standby mode allows to achieve the lowest power consumption. It is based
on the Cortex-M4 deep sleep mode, with the voltage regulator disabled.
The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and
the HSE oscillator are also switched off. SRAM and register contents are lost
except for the RTC registers, RTC backup registers, backup SRAM and Standby
circuitry.
The voltage regulator is OFF.
(++) Entry:
(+++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
(++) Exit:
(+++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wake-up,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
*** Auto-wake-up (AWU) from low-power mode ***
=============================================
[..]
(+) The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
Wake-up event, a tamper event or a time-stamp event, without depending on
an external interrupt (Auto-wake-up mode).
(+) RTC auto-wake-up (AWU) from the Stop and Standby modes
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
is necessary to configure the RTC to detect the tamper or time stamp event using the
HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions.
(++) To wake up from the Stop mode with an RTC Wake-up event, it is necessary to
configure the RTC to generate the RTC Wake-up event using the HAL_RTCEx_SetWakeUpTimer_IT() function.
@endverbatim
* @{
*/
/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
* information for the PVD.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage threshold corresponding to each
* detection level.
* @retval None
*/
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
{
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
/* Set PLS[7:5] bits according to PVDLevel value */
MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVD_EXTI_DISABLE_EVENT();
__HAL_PWR_PVD_EXTI_DISABLE_IT();
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
/* Configure interrupt mode */
if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
{
__HAL_PWR_PVD_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
{
__HAL_PWR_PVD_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
}
}
/**
* @brief Enables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_EnablePVD(void)
{
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_DisablePVD(void)
{
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
}
/**
* @brief Enables the Wake-up PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to enable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @arg PWR_WAKEUP_PIN2 available only on STM32F410xx/STM32F446xx/STM32F412xx/STM32F413xx/STM32F423xx devices
* @arg PWR_WAKEUP_PIN3 available only on STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx devices
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Enable the wake up pin */
SET_BIT(PWR->CSR, WakeUpPinx);
}
/**
* @brief Disables the Wake-up PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @arg PWR_WAKEUP_PIN2 available only on STM32F410xx/STM32F446xx/STM32F412xx/STM32F413xx/STM32F423xx devices
* @arg PWR_WAKEUP_PIN3 available only on STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx devices
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Disable the wake up pin */
CLEAR_BIT(PWR->CSR, WakeUpPinx);
}
/**
* @brief Enters Sleep mode.
*
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
*
* @note In Sleep mode, the systick is stopped to avoid exit from this mode with
* systick interrupt when used as time base for Timeout
*
* @param Regulator Specifies the regulator state in SLEEP mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
* @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
* @note This parameter is not used for the STM32F4 family and is kept as parameter
* just to maintain compatibility with the lower power families.
* @param SLEEPEntry Specifies if SLEEP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select SLEEP mode entry -------------------------------------------------*/
if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}
/**
* @brief Enters Stop mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by issuing an interrupt or a wake-up event,
* the HSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param Regulator Specifies the regulator state in Stop mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
* @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
* @param STOPEntry Specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
* @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Select the regulator state in Stop mode: Set PDDS and LPDS bits according to PWR_Regulator value */
MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPDS), Regulator);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enters Standby mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* - Reset pad (still available)
* - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
* Alarm out, or RTC clock calibration out.
* - RTC_AF2 pin (PI8) if configured for tamper or time-stamp.
* - WKUP pin 1 (PA0) if enabled.
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Select Standby mode */
SET_BIT(PWR->CR, PWR_CR_PDDS);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief This function handles the PWR PVD interrupt request.
* @note This API should be called under the PVD_IRQHandler().
* @retval None
*/
void HAL_PWR_PVD_IRQHandler(void)
{
/* Check PWR Exti flag */
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PWR Exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
}
/**
* @brief PWR PVD interrupt callback
* @retval None
*/
__weak void HAL_PWR_PVDCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PWR_PVDCallback could be implemented in the user file
*/
}
/**
* @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* Setting this bit is useful when the processor is expected to run only on
* interruptions handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
* @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enables CORTEX M4 SEVONPEND bit.
* @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Disables CORTEX M4 SEVONPEND bit.
* @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,604 @@
/**
******************************************************************************
* @file stm32f4xx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of PWR extension peripheral:
* + Peripheral Extended features functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup PWREx PWREx
* @brief PWR HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup PWREx_Private_Constants
* @{
*/
#define PWR_OVERDRIVE_TIMEOUT_VALUE 1000U
#define PWR_UDERDRIVE_TIMEOUT_VALUE 1000U
#define PWR_BKPREG_TIMEOUT_VALUE 1000U
#define PWR_VOSRDY_TIMEOUT_VALUE 1000U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup PWREx_Exported_Functions PWREx Exported Functions
* @{
*/
/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended features functions
* @brief Peripheral Extended features functions
*
@verbatim
===============================================================================
##### Peripheral extended features functions #####
===============================================================================
*** Main and Backup Regulators configuration ***
================================================
[..]
(+) The backup domain includes 4 Kbytes of backup SRAM accessible only from
the CPU, and address in 32-bit, 16-bit or 8-bit mode. Its content is
retained even in Standby or VBAT mode when the low power backup regulator
is enabled. It can be considered as an internal EEPROM when VBAT is
always present. You can use the HAL_PWREx_EnableBkUpReg() function to
enable the low power backup regulator.
(+) When the backup domain is supplied by VDD (analog switch connected to VDD)
the backup SRAM is powered from VDD which replaces the VBAT power supply to
save battery life.
(+) The backup SRAM is not mass erased by a tamper event. It is read
protected to prevent confidential data, such as cryptographic private
key, from being accessed. The backup SRAM can be erased only through
the Flash interface when a protection level change from level 1 to
level 0 is requested.
-@- Refer to the description of Read protection (RDP) in the Flash
programming manual.
(+) The main internal regulator can be configured to have a tradeoff between
performance and power consumption when the device does not operate at
the maximum frequency. This is done through __HAL_PWR_MAINREGULATORMODE_CONFIG()
macro which configure VOS bit in PWR_CR register
Refer to the product datasheets for more details.
*** FLASH Power Down configuration ****
=======================================
[..]
(+) By setting the FPDS bit in the PWR_CR register by using the
HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters power
down mode when the device enters Stop mode. When the Flash memory
is in power down mode, an additional startup delay is incurred when
waking up from Stop mode.
(+) For STM32F42xxx/43xxx/446xx/469xx/479xx Devices, the scale can be modified only when the PLL
is OFF and the HSI or HSE clock source is selected as system clock.
The new value programmed is active only when the PLL is ON.
When the PLL is OFF, the voltage scale 3 is automatically selected.
Refer to the datasheets for more details.
*** Over-Drive and Under-Drive configuration ****
=================================================
[..]
(+) For STM32F42xxx/43xxx/446xx/469xx/479xx Devices, in Run mode: the main regulator has
2 operating modes available:
(++) Normal mode: The CPU and core logic operate at maximum frequency at a given
voltage scaling (scale 1, scale 2 or scale 3)
(++) Over-drive mode: This mode allows the CPU and the core logic to operate at a
higher frequency than the normal mode for a given voltage scaling (scale 1,
scale 2 or scale 3). This mode is enabled through HAL_PWREx_EnableOverDrive() function and
disabled by HAL_PWREx_DisableOverDrive() function, to enter or exit from Over-drive mode please follow
the sequence described in Reference manual.
(+) For STM32F42xxx/43xxx/446xx/469xx/479xx Devices, in Stop mode: the main regulator or low power regulator
supplies a low power voltage to the 1.2V domain, thus preserving the content of registers
and internal SRAM. 2 operating modes are available:
(++) Normal mode: the 1.2V domain is preserved in nominal leakage mode. This mode is only
available when the main regulator or the low power regulator is used in Scale 3 or
low voltage mode.
(++) Under-drive mode: the 1.2V domain is preserved in reduced leakage mode. This mode is only
available when the main regulator or the low power regulator is in low voltage mode.
@endverbatim
* @{
*/
/**
* @brief Enables the Backup Regulator.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg(void)
{
uint32_t tickstart = 0U;
*(__IO uint32_t *) CSR_BRE_BB = (uint32_t)ENABLE;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till Backup regulator ready flag is set */
while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) == RESET)
{
if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Disables the Backup Regulator.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg(void)
{
uint32_t tickstart = 0U;
*(__IO uint32_t *) CSR_BRE_BB = (uint32_t)DISABLE;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till Backup regulator ready flag is set */
while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) != RESET)
{
if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Enables the Flash Power Down in Stop mode.
* @retval None
*/
void HAL_PWREx_EnableFlashPowerDown(void)
{
*(__IO uint32_t *) CR_FPDS_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables the Flash Power Down in Stop mode.
* @retval None
*/
void HAL_PWREx_DisableFlashPowerDown(void)
{
*(__IO uint32_t *) CR_FPDS_BB = (uint32_t)DISABLE;
}
/**
* @brief Return Voltage Scaling Range.
* @retval The configured scale for the regulator voltage(VOS bit field).
* The returned value can be one of the following:
* - @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output Scale 1 mode
* - @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output Scale 2 mode
* - @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output Scale 3 mode
*/
uint32_t HAL_PWREx_GetVoltageRange(void)
{
return (PWR->CR & PWR_CR_VOS);
}
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)
/**
* @brief Configures the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
* @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output range 1 mode,
* the maximum value of fHCLK = 168 MHz.
* @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output range 2 mode,
* the maximum value of fHCLK = 144 MHz.
* @note When moving from Range 1 to Range 2, the system frequency must be decreased to
* a value below 144 MHz before calling HAL_PWREx_ConfigVoltageScaling() API.
* When moving from Range 2 to Range 1, the system frequency can be increased to
* a value up to 168 MHz after calling HAL_PWREx_ConfigVoltageScaling() API.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t tickstart = 0U;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
/* Enable PWR RCC Clock Peripheral */
__HAL_RCC_PWR_CLK_ENABLE();
/* Set Range */
__HAL_PWR_VOLTAGESCALING_CONFIG(VoltageScaling);
/* Get Start Tick*/
tickstart = HAL_GetTick();
while((__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET))
{
if((HAL_GetTick() - tickstart ) > PWR_VOSRDY_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
#elif defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || \
defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F410Tx) || defined(STM32F410Cx) || \
defined(STM32F410Rx) || defined(STM32F411xE) || defined(STM32F446xx) || defined(STM32F469xx) || \
defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || defined(STM32F412Rx) || \
defined(STM32F412Cx) || defined(STM32F413xx) || defined(STM32F423xx)
/**
* @brief Configures the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
* @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output range 1 mode,
* the maximum value of fHCLK is 168 MHz. It can be extended to
* 180 MHz by activating the over-drive mode.
* @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output range 2 mode,
* the maximum value of fHCLK is 144 MHz. It can be extended to,
* 168 MHz by activating the over-drive mode.
* @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output range 3 mode,
* the maximum value of fHCLK is 120 MHz.
* @note To update the system clock frequency(SYSCLK):
* - Set the HSI or HSE as system clock frequency using the HAL_RCC_ClockConfig().
* - Call the HAL_RCC_OscConfig() to configure the PLL.
* - Call HAL_PWREx_ConfigVoltageScaling() API to adjust the voltage scale.
* - Set the new system clock frequency using the HAL_RCC_ClockConfig().
* @note The scale can be modified only when the HSI or HSE clock source is selected
* as system clock source, otherwise the API returns HAL_ERROR.
* @note When the PLL is OFF, the voltage scale 3 is automatically selected and the VOS bits
* value in the PWR_CR1 register are not taken in account.
* @note This API forces the PLL state ON to allow the possibility to configure the voltage scale 1 or 2.
* @note The new voltage scale is active only when the PLL is ON.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t tickstart = 0U;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
/* Enable PWR RCC Clock Peripheral */
__HAL_RCC_PWR_CLK_ENABLE();
/* Check if the PLL is used as system clock or not */
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
{
/* Disable the main PLL */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick */
tickstart = HAL_GetTick();
/* Wait till PLL is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set Range */
__HAL_PWR_VOLTAGESCALING_CONFIG(VoltageScaling);
/* Enable the main PLL */
__HAL_RCC_PLL_ENABLE();
/* Get Start Tick */
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Get Start Tick */
tickstart = HAL_GetTick();
while((__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET))
{
if((HAL_GetTick() - tickstart ) > PWR_VOSRDY_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx */
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F410Tx) || defined(STM32F410Cx) || defined(STM32F410Rx) ||\
defined(STM32F411xE) || defined(STM32F412Zx) || defined(STM32F412Vx) || defined(STM32F412Rx) || defined(STM32F412Cx) ||\
defined(STM32F413xx) || defined(STM32F423xx)
/**
* @brief Enables Main Regulator low voltage mode.
* @note This mode is only available for STM32F401xx/STM32F410xx/STM32F411xx/STM32F412Zx/STM32F412Rx/STM32F412Vx/STM32F412Cx/
* STM32F413xx/STM32F423xx devices.
* @retval None
*/
void HAL_PWREx_EnableMainRegulatorLowVoltage(void)
{
*(__IO uint32_t *) CR_MRLVDS_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables Main Regulator low voltage mode.
* @note This mode is only available for STM32F401xx/STM32F410xx/STM32F411xx/STM32F412Zx/STM32F412Rx/STM32F412Vx/STM32F412Cx/
* STM32F413xx/STM32F423xxdevices.
* @retval None
*/
void HAL_PWREx_DisableMainRegulatorLowVoltage(void)
{
*(__IO uint32_t *) CR_MRLVDS_BB = (uint32_t)DISABLE;
}
/**
* @brief Enables Low Power Regulator low voltage mode.
* @note This mode is only available for STM32F401xx/STM32F410xx/STM32F411xx/STM32F412Zx/STM32F412Rx/STM32F412Vx/STM32F412Cx/
* STM32F413xx/STM32F423xx devices.
* @retval None
*/
void HAL_PWREx_EnableLowRegulatorLowVoltage(void)
{
*(__IO uint32_t *) CR_LPLVDS_BB = (uint32_t)ENABLE;
}
/**
* @brief Disables Low Power Regulator low voltage mode.
* @note This mode is only available for STM32F401xx/STM32F410xx/STM32F411xx/STM32F412Zx/STM32F412Rx/STM32F412Vx/STM32F412Cx/
* STM32F413xx/STM32F423xx devices.
* @retval None
*/
void HAL_PWREx_DisableLowRegulatorLowVoltage(void)
{
*(__IO uint32_t *) CR_LPLVDS_BB = (uint32_t)DISABLE;
}
#endif /* STM32F401xC || STM32F401xE || STM32F410xx || STM32F411xE || STM32F412Zx || STM32F412Rx || STM32F412Vx || STM32F412Cx ||
STM32F413xx || STM32F423xx */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
/**
* @brief Activates the Over-Drive mode.
* @note This function can be used only for STM32F42xx/STM32F43xx/STM32F446xx/STM32F469xx/STM32F479xx devices.
* This mode allows the CPU and the core logic to operate at a higher frequency
* than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3).
* @note It is recommended to enter or exit Over-drive mode when the application is not running
* critical tasks and when the system clock source is either HSI or HSE.
* During the Over-drive switch activation, no peripheral clocks should be enabled.
* The peripheral clocks must be enabled once the Over-drive mode is activated.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_EnableOverDrive(void)
{
uint32_t tickstart = 0U;
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable the Over-drive to extend the clock frequency to 180 Mhz */
__HAL_PWR_OVERDRIVE_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY))
{
if((HAL_GetTick() - tickstart) > PWR_OVERDRIVE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Enable the Over-drive switch */
__HAL_PWR_OVERDRIVESWITCHING_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY))
{
if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Deactivates the Over-Drive mode.
* @note This function can be used only for STM32F42xx/STM32F43xx/STM32F446xx/STM32F469xx/STM32F479xx devices.
* This mode allows the CPU and the core logic to operate at a higher frequency
* than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3).
* @note It is recommended to enter or exit Over-drive mode when the application is not running
* critical tasks and when the system clock source is either HSI or HSE.
* During the Over-drive switch activation, no peripheral clocks should be enabled.
* The peripheral clocks must be enabled once the Over-drive mode is activated.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_DisableOverDrive(void)
{
uint32_t tickstart = 0U;
__HAL_RCC_PWR_CLK_ENABLE();
/* Disable the Over-drive switch */
__HAL_PWR_OVERDRIVESWITCHING_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY))
{
if((HAL_GetTick() - tickstart) > PWR_OVERDRIVE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Disable the Over-drive */
__HAL_PWR_OVERDRIVE_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY))
{
if((HAL_GetTick() - tickstart) > PWR_OVERDRIVE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Enters in Under-Drive STOP mode.
*
* @note This mode is only available for STM32F42xxx/STM32F43xxx/STM32F446xx/STM32F469xx/STM32F479xx devices.
*
* @note This mode can be selected only when the Under-Drive is already active
*
* @note This mode is enabled only with STOP low power mode.
* In this mode, the 1.2V domain is preserved in reduced leakage mode. This
* mode is only available when the main regulator or the low power regulator
* is in low voltage mode
*
* @note If the Under-drive mode was enabled, it is automatically disabled after
* exiting Stop mode.
* When the voltage regulator operates in Under-drive mode, an additional
* startup delay is induced when waking up from Stop mode.
*
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
*
* @note When exiting Stop mode by issuing an interrupt or a wake-up event,
* the HSI RC oscillator is selected as system clock.
*
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
*
* @param Regulator specifies the regulator state in STOP mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_UNDERDRIVE_ON: Main Regulator in under-drive mode
* and Flash memory in power-down when the device is in Stop under-drive mode
* @arg PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON: Low Power Regulator in under-drive mode
* and Flash memory in power-down when the device is in Stop under-drive mode
* @param STOPEntry specifies if STOP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction
* @arg PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction
* @retval None
*/
HAL_StatusTypeDef HAL_PWREx_EnterUnderDriveSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
uint32_t tmpreg1 = 0U;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR_UNDERDRIVE(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Enable Power ctrl clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable the Under-drive Mode ---------------------------------------------*/
/* Clear Under-drive flag */
__HAL_PWR_CLEAR_ODRUDR_FLAG();
/* Enable the Under-drive */
__HAL_PWR_UNDERDRIVE_ENABLE();
/* Select the regulator state in STOP mode ---------------------------------*/
tmpreg1 = PWR->CR;
/* Clear PDDS, LPDS, MRLUDS and LPLUDS bits */
tmpreg1 &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS | PWR_CR_LPUDS | PWR_CR_MRUDS);
/* Set LPDS, MRLUDS and LPLUDS bits according to PWR_Regulator value */
tmpreg1 |= Regulator;
/* Store the new value */
PWR->CR = tmpreg1;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* Select STOP mode entry --------------------------------------------------*/
if(STOPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
return HAL_OK;
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx || STM32F479xx */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,912 @@
/**
******************************************************************************
* @file stm32f4xx_hal_sram.c
* @author MCD Application Team
* @brief SRAM HAL module driver.
* This file provides a generic firmware to drive SRAM memories
* mounted as external device.
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
This driver is a generic layered driver which contains a set of APIs used to
control SRAM memories. It uses the FMC layer functions to interface
with SRAM devices.
The following sequence should be followed to configure the FMC/FSMC to interface
with SRAM/PSRAM memories:
(#) Declare a SRAM_HandleTypeDef handle structure, for example:
SRAM_HandleTypeDef hsram; and:
(++) Fill the SRAM_HandleTypeDef handle "Init" field with the allowed
values of the structure member.
(++) Fill the SRAM_HandleTypeDef handle "Instance" field with a predefined
base register instance for NOR or SRAM device
(++) Fill the SRAM_HandleTypeDef handle "Extended" field with a predefined
base register instance for NOR or SRAM extended mode
(#) Declare two FMC_NORSRAM_TimingTypeDef structures, for both normal and extended
mode timings; for example:
FMC_NORSRAM_TimingTypeDef Timing and FMC_NORSRAM_TimingTypeDef ExTiming;
and fill its fields with the allowed values of the structure member.
(#) Initialize the SRAM Controller by calling the function HAL_SRAM_Init(). This function
performs the following sequence:
(##) MSP hardware layer configuration using the function HAL_SRAM_MspInit()
(##) Control register configuration using the FMC NORSRAM interface function
FMC_NORSRAM_Init()
(##) Timing register configuration using the FMC NORSRAM interface function
FMC_NORSRAM_Timing_Init()
(##) Extended mode Timing register configuration using the FMC NORSRAM interface function
FMC_NORSRAM_Extended_Timing_Init()
(##) Enable the SRAM device using the macro __FMC_NORSRAM_ENABLE()
(#) At this stage you can perform read/write accesses from/to the memory connected
to the NOR/SRAM Bank. You can perform either polling or DMA transfer using the
following APIs:
(++) HAL_SRAM_Read()/HAL_SRAM_Write() for polling read/write access
(++) HAL_SRAM_Read_DMA()/HAL_SRAM_Write_DMA() for DMA read/write transfer
(#) You can also control the SRAM device by calling the control APIs HAL_SRAM_WriteOperation_Enable()/
HAL_SRAM_WriteOperation_Disable() to respectively enable/disable the SRAM write operation
(#) You can continuously monitor the SRAM device HAL state by calling the function
HAL_SRAM_GetState()
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_SRAM_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions @ref HAL_SRAM_RegisterCallback() to register a user callback,
it allows to register following callbacks:
(+) MspInitCallback : SRAM MspInit.
(+) MspDeInitCallback : SRAM MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function @ref HAL_SRAM_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
(+) MspInitCallback : SRAM MspInit.
(+) MspDeInitCallback : SRAM MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the @ref HAL_SRAM_Init and if the state is HAL_SRAM_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the @ref HAL_SRAM_Init
and @ref HAL_SRAM_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the @ref HAL_SRAM_Init and @ref HAL_SRAM_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using @ref HAL_SRAM_RegisterCallback before calling @ref HAL_SRAM_DeInit
or @ref HAL_SRAM_Init function.
When The compilation define USE_HAL_SRAM_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup SRAM SRAM
* @brief SRAM driver modules
* @{
*/
#ifdef HAL_SRAM_MODULE_ENABLED
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) ||\
defined(STM32F412Vx) || defined(STM32F412Rx) || defined(STM32F413xx) || defined(STM32F423xx)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SRAM_Exported_Functions SRAM Exported Functions
* @{
*/
/** @defgroup SRAM_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### SRAM Initialization and de_initialization functions #####
==============================================================================
[..] This section provides functions allowing to initialize/de-initialize
the SRAM memory
@endverbatim
* @{
*/
/**
* @brief Performs the SRAM device initialization sequence
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param Timing Pointer to SRAM control timing structure
* @param ExtTiming Pointer to SRAM extended mode timing structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Init(SRAM_HandleTypeDef *hsram, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming)
{
/* Check the SRAM handle parameter */
if(hsram == NULL)
{
return HAL_ERROR;
}
if(hsram->State == HAL_SRAM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hsram->Lock = HAL_UNLOCKED;
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
if(hsram->MspInitCallback == NULL)
{
hsram->MspInitCallback = HAL_SRAM_MspInit;
}
hsram->DmaXferCpltCallback = HAL_SRAM_DMA_XferCpltCallback;
hsram->DmaXferErrorCallback = HAL_SRAM_DMA_XferErrorCallback;
/* Init the low level hardware */
hsram->MspInitCallback(hsram);
#else
/* Initialize the low level hardware (MSP) */
HAL_SRAM_MspInit(hsram);
#endif
}
/* Initialize SRAM control Interface */
FMC_NORSRAM_Init(hsram->Instance, &(hsram->Init));
/* Initialize SRAM timing Interface */
FMC_NORSRAM_Timing_Init(hsram->Instance, Timing, hsram->Init.NSBank);
/* Initialize SRAM extended mode timing Interface */
FMC_NORSRAM_Extended_Timing_Init(hsram->Extended, ExtTiming, hsram->Init.NSBank, hsram->Init.ExtendedMode);
/* Enable the NORSRAM device */
__FMC_NORSRAM_ENABLE(hsram->Instance, hsram->Init.NSBank);
return HAL_OK;
}
/**
* @brief Performs the SRAM device De-initialization sequence.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_DeInit(SRAM_HandleTypeDef *hsram)
{
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
if(hsram->MspDeInitCallback == NULL)
{
hsram->MspDeInitCallback = HAL_SRAM_MspDeInit;
}
/* DeInit the low level hardware */
hsram->MspDeInitCallback(hsram);
#else
/* De-Initialize the low level hardware (MSP) */
HAL_SRAM_MspDeInit(hsram);
#endif
/* Configure the SRAM registers with their reset values */
FMC_NORSRAM_DeInit(hsram->Instance, hsram->Extended, hsram->Init.NSBank);
hsram->State = HAL_SRAM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief SRAM MSP Init.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval None
*/
__weak void HAL_SRAM_MspInit(SRAM_HandleTypeDef *hsram)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsram);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SRAM_MspInit could be implemented in the user file
*/
}
/**
* @brief SRAM MSP DeInit.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval None
*/
__weak void HAL_SRAM_MspDeInit(SRAM_HandleTypeDef *hsram)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsram);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SRAM_MspDeInit could be implemented in the user file
*/
}
/**
* @brief DMA transfer complete callback.
* @param hdma pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval None
*/
__weak void HAL_SRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdma);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SRAM_DMA_XferCpltCallback could be implemented in the user file
*/
}
/**
* @brief DMA transfer complete error callback.
* @param hdma pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval None
*/
__weak void HAL_SRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdma);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SRAM_DMA_XferErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SRAM_Exported_Functions_Group2 Input and Output functions
* @brief Input Output and memory control functions
*
@verbatim
==============================================================================
##### SRAM Input and Output functions #####
==============================================================================
[..]
This section provides functions allowing to use and control the SRAM memory
@endverbatim
* @{
*/
/**
* @brief Reads 8-bit buffer from SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to read start address
* @param pDstBuffer Pointer to destination buffer
* @param BufferSize Size of the buffer to read from memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Read_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pDstBuffer, uint32_t BufferSize)
{
__IO uint8_t * pSramAddress = (uint8_t *)pAddress;
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Read data from memory */
for(; BufferSize != 0U; BufferSize--)
{
*pDstBuffer = *(__IO uint8_t *)pSramAddress;
pDstBuffer++;
pSramAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Writes 8-bit buffer to SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to write start address
* @param pSrcBuffer Pointer to source buffer to write
* @param BufferSize Size of the buffer to write to memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Write_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pSrcBuffer, uint32_t BufferSize)
{
__IO uint8_t * pSramAddress = (uint8_t *)pAddress;
/* Check the SRAM controller state */
if(hsram->State == HAL_SRAM_STATE_PROTECTED)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Write data to memory */
for(; BufferSize != 0U; BufferSize--)
{
*(__IO uint8_t *)pSramAddress = *pSrcBuffer;
pSrcBuffer++;
pSramAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Reads 16-bit buffer from SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to read start address
* @param pDstBuffer Pointer to destination buffer
* @param BufferSize Size of the buffer to read from memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Read_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pDstBuffer, uint32_t BufferSize)
{
__IO uint16_t * pSramAddress = (uint16_t *)pAddress;
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Read data from memory */
for(; BufferSize != 0U; BufferSize--)
{
*pDstBuffer = *(__IO uint16_t *)pSramAddress;
pDstBuffer++;
pSramAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Writes 16-bit buffer to SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to write start address
* @param pSrcBuffer Pointer to source buffer to write
* @param BufferSize Size of the buffer to write to memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Write_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pSrcBuffer, uint32_t BufferSize)
{
__IO uint16_t * pSramAddress = (uint16_t *)pAddress;
/* Check the SRAM controller state */
if(hsram->State == HAL_SRAM_STATE_PROTECTED)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Write data to memory */
for(; BufferSize != 0U; BufferSize--)
{
*(__IO uint16_t *)pSramAddress = *pSrcBuffer;
pSrcBuffer++;
pSramAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Reads 32-bit buffer from SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to read start address
* @param pDstBuffer Pointer to destination buffer
* @param BufferSize Size of the buffer to read from memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Read_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize)
{
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Read data from memory */
for(; BufferSize != 0U; BufferSize--)
{
*pDstBuffer = *(__IO uint32_t *)pAddress;
pDstBuffer++;
pAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Writes 32-bit buffer to SRAM memory.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to write start address
* @param pSrcBuffer Pointer to source buffer to write
* @param BufferSize Size of the buffer to write to memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Write_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize)
{
/* Check the SRAM controller state */
if(hsram->State == HAL_SRAM_STATE_PROTECTED)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Write data to memory */
for(; BufferSize != 0U; BufferSize--)
{
*(__IO uint32_t *)pAddress = *pSrcBuffer;
pSrcBuffer++;
pAddress++;
}
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Reads a Words data from the SRAM memory using DMA transfer.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to read start address
* @param pDstBuffer Pointer to destination buffer
* @param BufferSize Size of the buffer to read from memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Read_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize)
{
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Configure DMA user callbacks */
hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback;
hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pAddress, (uint32_t)pDstBuffer, (uint32_t)BufferSize);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Writes a Words data buffer to SRAM memory using DMA transfer.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @param pAddress Pointer to write start address
* @param pSrcBuffer Pointer to source buffer to write
* @param BufferSize Size of the buffer to write to memory
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_Write_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize)
{
/* Check the SRAM controller state */
if(hsram->State == HAL_SRAM_STATE_PROTECTED)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Configure DMA user callbacks */
hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback;
hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pSrcBuffer, (uint32_t)pAddress, (uint32_t)BufferSize);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User SRAM Callback
* To be used instead of the weak (surcharged) predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_SRAM_MSP_INIT_CB_ID SRAM MspInit callback ID
* @arg @ref HAL_SRAM_MSP_DEINIT_CB_ID SRAM MspDeInit callback ID
* @param pCallback : pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_SRAM_RegisterCallback (SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId, pSRAM_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SRAM_StateTypeDef state;
if(pCallback == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hsram);
state = hsram->State;
if((state == HAL_SRAM_STATE_READY) || (state == HAL_SRAM_STATE_RESET) || (state == HAL_SRAM_STATE_PROTECTED))
{
switch (CallbackId)
{
case HAL_SRAM_MSP_INIT_CB_ID :
hsram->MspInitCallback = pCallback;
break;
case HAL_SRAM_MSP_DEINIT_CB_ID :
hsram->MspDeInitCallback = pCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hsram);
return status;
}
/**
* @brief Unregister a User SRAM Callback
* SRAM Callback is redirected to the weak (surcharged) predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_SRAM_MSP_INIT_CB_ID SRAM MspInit callback ID
* @arg @ref HAL_SRAM_MSP_DEINIT_CB_ID SRAM MspDeInit callback ID
* @arg @ref HAL_SRAM_DMA_XFER_CPLT_CB_ID SRAM DMA Xfer Complete callback ID
* @arg @ref HAL_SRAM_DMA_XFER_ERR_CB_ID SRAM DMA Xfer Error callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_SRAM_UnRegisterCallback (SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SRAM_StateTypeDef state;
/* Process locked */
__HAL_LOCK(hsram);
state = hsram->State;
if((state == HAL_SRAM_STATE_READY) || (state == HAL_SRAM_STATE_PROTECTED))
{
switch (CallbackId)
{
case HAL_SRAM_MSP_INIT_CB_ID :
hsram->MspInitCallback = HAL_SRAM_MspInit;
break;
case HAL_SRAM_MSP_DEINIT_CB_ID :
hsram->MspDeInitCallback = HAL_SRAM_MspDeInit;
break;
case HAL_SRAM_DMA_XFER_CPLT_CB_ID :
hsram->DmaXferCpltCallback = HAL_SRAM_DMA_XferCpltCallback;
break;
case HAL_SRAM_DMA_XFER_ERR_CB_ID :
hsram->DmaXferErrorCallback = HAL_SRAM_DMA_XferErrorCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else if(state == HAL_SRAM_STATE_RESET)
{
switch (CallbackId)
{
case HAL_SRAM_MSP_INIT_CB_ID :
hsram->MspInitCallback = HAL_SRAM_MspInit;
break;
case HAL_SRAM_MSP_DEINIT_CB_ID :
hsram->MspDeInitCallback = HAL_SRAM_MspDeInit;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hsram);
return status;
}
/**
* @brief Register a User SRAM Callback for DMA transfers
* To be used instead of the weak (surcharged) predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_SRAM_DMA_XFER_CPLT_CB_ID SRAM DMA Xfer Complete callback ID
* @arg @ref HAL_SRAM_DMA_XFER_ERR_CB_ID SRAM DMA Xfer Error callback ID
* @param pCallback : pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_SRAM_RegisterDmaCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_CallbackIDTypeDef CallbackId, pSRAM_DmaCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SRAM_StateTypeDef state;
if(pCallback == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hsram);
state = hsram->State;
if((state == HAL_SRAM_STATE_READY) || (state == HAL_SRAM_STATE_PROTECTED))
{
switch (CallbackId)
{
case HAL_SRAM_DMA_XFER_CPLT_CB_ID :
hsram->DmaXferCpltCallback = pCallback;
break;
case HAL_SRAM_DMA_XFER_ERR_CB_ID :
hsram->DmaXferErrorCallback = pCallback;
break;
default :
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hsram);
return status;
}
#endif
/**
* @}
*/
/** @defgroup SRAM_Exported_Functions_Group3 Control functions
* @brief management functions
*
@verbatim
==============================================================================
##### SRAM Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the SRAM interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically SRAM write operation.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_WriteOperation_Enable(SRAM_HandleTypeDef *hsram)
{
/* Process Locked */
__HAL_LOCK(hsram);
/* Enable write operation */
FMC_NORSRAM_WriteOperation_Enable(hsram->Instance, hsram->Init.NSBank);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @brief Disables dynamically SRAM write operation.
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SRAM_WriteOperation_Disable(SRAM_HandleTypeDef *hsram)
{
/* Process Locked */
__HAL_LOCK(hsram);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_BUSY;
/* Disable write operation */
FMC_NORSRAM_WriteOperation_Disable(hsram->Instance, hsram->Init.NSBank);
/* Update the SRAM controller state */
hsram->State = HAL_SRAM_STATE_PROTECTED;
/* Process unlocked */
__HAL_UNLOCK(hsram);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup SRAM_Exported_Functions_Group4 State functions
* @brief Peripheral State functions
*
@verbatim
==============================================================================
##### SRAM State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the SRAM controller
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Returns the SRAM controller state
* @param hsram pointer to a SRAM_HandleTypeDef structure that contains
* the configuration information for SRAM module.
* @retval HAL state
*/
HAL_SRAM_StateTypeDef HAL_SRAM_GetState(SRAM_HandleTypeDef *hsram)
{
return hsram->State;
}
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx ||\
STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx || STM32F479xx || STM32F412Zx ||\
STM32F412Vx || STM32F412Rx || STM32F412Cx || STM32F413xx || STM32F423xx */
#endif /* HAL_SRAM_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,107 @@
/**
******************************************************************************
* @file stm32f4xx_ll_crc.c
* @author MCD Application Team
* @brief CRC LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_crc.h"
#include "stm32f4xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif/* USE_FULL_ASSERT */
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (CRC)
/** @addtogroup CRC_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CRC_LL_Exported_Functions
* @{
*/
/** @addtogroup CRC_LL_EF_Init
* @{
*/
/**
* @brief De-initialize CRC registers (Registers restored to their default values).
* @param CRCx CRC Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: CRC registers are de-initialized
* - ERROR: CRC registers are not de-initialized
*/
ErrorStatus LL_CRC_DeInit(CRC_TypeDef *CRCx)
{
ErrorStatus status = SUCCESS;
/* Check the parameters */
assert_param(IS_CRC_ALL_INSTANCE(CRCx));
if (CRCx == CRC)
{
/* Force CRC reset */
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_CRC);
/* Release CRC reset */
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_CRC);
}
else
{
status = ERROR;
}
return (status);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (CRC) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,425 @@
/**
******************************************************************************
* @file stm32f4xx_ll_dma.c
* @author MCD Application Team
* @brief DMA LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_dma.h"
#include "stm32f4xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (DMA1) || defined (DMA2)
/** @defgroup DMA_LL DMA
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup DMA_LL_Private_Macros
* @{
*/
#define IS_LL_DMA_DIRECTION(__VALUE__) (((__VALUE__) == LL_DMA_DIRECTION_PERIPH_TO_MEMORY) || \
((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_PERIPH) || \
((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_MEMORY))
#define IS_LL_DMA_MODE(__VALUE__) (((__VALUE__) == LL_DMA_MODE_NORMAL) || \
((__VALUE__) == LL_DMA_MODE_CIRCULAR) || \
((__VALUE__) == LL_DMA_MODE_PFCTRL))
#define IS_LL_DMA_PERIPHINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_PERIPH_INCREMENT) || \
((__VALUE__) == LL_DMA_PERIPH_NOINCREMENT))
#define IS_LL_DMA_MEMORYINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_MEMORY_INCREMENT) || \
((__VALUE__) == LL_DMA_MEMORY_NOINCREMENT))
#define IS_LL_DMA_PERIPHDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_PDATAALIGN_BYTE) || \
((__VALUE__) == LL_DMA_PDATAALIGN_HALFWORD) || \
((__VALUE__) == LL_DMA_PDATAALIGN_WORD))
#define IS_LL_DMA_MEMORYDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_MDATAALIGN_BYTE) || \
((__VALUE__) == LL_DMA_MDATAALIGN_HALFWORD) || \
((__VALUE__) == LL_DMA_MDATAALIGN_WORD))
#define IS_LL_DMA_NBDATA(__VALUE__) ((__VALUE__) <= 0x0000FFFFU)
#define IS_LL_DMA_CHANNEL(__VALUE__) (((__VALUE__) == LL_DMA_CHANNEL_0) || \
((__VALUE__) == LL_DMA_CHANNEL_1) || \
((__VALUE__) == LL_DMA_CHANNEL_2) || \
((__VALUE__) == LL_DMA_CHANNEL_3) || \
((__VALUE__) == LL_DMA_CHANNEL_4) || \
((__VALUE__) == LL_DMA_CHANNEL_5) || \
((__VALUE__) == LL_DMA_CHANNEL_6) || \
((__VALUE__) == LL_DMA_CHANNEL_7))
#define IS_LL_DMA_PRIORITY(__VALUE__) (((__VALUE__) == LL_DMA_PRIORITY_LOW) || \
((__VALUE__) == LL_DMA_PRIORITY_MEDIUM) || \
((__VALUE__) == LL_DMA_PRIORITY_HIGH) || \
((__VALUE__) == LL_DMA_PRIORITY_VERYHIGH))
#define IS_LL_DMA_ALL_STREAM_INSTANCE(INSTANCE, STREAM) ((((INSTANCE) == DMA1) && \
(((STREAM) == LL_DMA_STREAM_0) || \
((STREAM) == LL_DMA_STREAM_1) || \
((STREAM) == LL_DMA_STREAM_2) || \
((STREAM) == LL_DMA_STREAM_3) || \
((STREAM) == LL_DMA_STREAM_4) || \
((STREAM) == LL_DMA_STREAM_5) || \
((STREAM) == LL_DMA_STREAM_6) || \
((STREAM) == LL_DMA_STREAM_7) || \
((STREAM) == LL_DMA_STREAM_ALL))) ||\
(((INSTANCE) == DMA2) && \
(((STREAM) == LL_DMA_STREAM_0) || \
((STREAM) == LL_DMA_STREAM_1) || \
((STREAM) == LL_DMA_STREAM_2) || \
((STREAM) == LL_DMA_STREAM_3) || \
((STREAM) == LL_DMA_STREAM_4) || \
((STREAM) == LL_DMA_STREAM_5) || \
((STREAM) == LL_DMA_STREAM_6) || \
((STREAM) == LL_DMA_STREAM_7) || \
((STREAM) == LL_DMA_STREAM_ALL))))
#define IS_LL_DMA_FIFO_MODE_STATE(STATE) (((STATE) == LL_DMA_FIFOMODE_DISABLE ) || \
((STATE) == LL_DMA_FIFOMODE_ENABLE))
#define IS_LL_DMA_FIFO_THRESHOLD(THRESHOLD) (((THRESHOLD) == LL_DMA_FIFOTHRESHOLD_1_4) || \
((THRESHOLD) == LL_DMA_FIFOTHRESHOLD_1_2) || \
((THRESHOLD) == LL_DMA_FIFOTHRESHOLD_3_4) || \
((THRESHOLD) == LL_DMA_FIFOTHRESHOLD_FULL))
#define IS_LL_DMA_MEMORY_BURST(BURST) (((BURST) == LL_DMA_MBURST_SINGLE) || \
((BURST) == LL_DMA_MBURST_INC4) || \
((BURST) == LL_DMA_MBURST_INC8) || \
((BURST) == LL_DMA_MBURST_INC16))
#define IS_LL_DMA_PERIPHERAL_BURST(BURST) (((BURST) == LL_DMA_PBURST_SINGLE) || \
((BURST) == LL_DMA_PBURST_INC4) || \
((BURST) == LL_DMA_PBURST_INC8) || \
((BURST) == LL_DMA_PBURST_INC16))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DMA_LL_Exported_Functions
* @{
*/
/** @addtogroup DMA_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the DMA registers to their default reset values.
* @param DMAx DMAx Instance
* @param Stream This parameter can be one of the following values:
* @arg @ref LL_DMA_STREAM_0
* @arg @ref LL_DMA_STREAM_1
* @arg @ref LL_DMA_STREAM_2
* @arg @ref LL_DMA_STREAM_3
* @arg @ref LL_DMA_STREAM_4
* @arg @ref LL_DMA_STREAM_5
* @arg @ref LL_DMA_STREAM_6
* @arg @ref LL_DMA_STREAM_7
* @arg @ref LL_DMA_STREAM_ALL
* @retval An ErrorStatus enumeration value:
* - SUCCESS: DMA registers are de-initialized
* - ERROR: DMA registers are not de-initialized
*/
uint32_t LL_DMA_DeInit(DMA_TypeDef *DMAx, uint32_t Stream)
{
DMA_Stream_TypeDef *tmp = (DMA_Stream_TypeDef *)DMA1_Stream0;
ErrorStatus status = SUCCESS;
/* Check the DMA Instance DMAx and Stream parameters*/
assert_param(IS_LL_DMA_ALL_STREAM_INSTANCE(DMAx, Stream));
if (Stream == LL_DMA_STREAM_ALL)
{
if (DMAx == DMA1)
{
/* Force reset of DMA clock */
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA1);
/* Release reset of DMA clock */
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA1);
}
else if (DMAx == DMA2)
{
/* Force reset of DMA clock */
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA2);
/* Release reset of DMA clock */
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA2);
}
else
{
status = ERROR;
}
}
else
{
/* Disable the selected Stream */
LL_DMA_DisableStream(DMAx,Stream);
/* Get the DMA Stream Instance */
tmp = (DMA_Stream_TypeDef *)(__LL_DMA_GET_STREAM_INSTANCE(DMAx, Stream));
/* Reset DMAx_Streamy configuration register */
LL_DMA_WriteReg(tmp, CR, 0U);
/* Reset DMAx_Streamy remaining bytes register */
LL_DMA_WriteReg(tmp, NDTR, 0U);
/* Reset DMAx_Streamy peripheral address register */
LL_DMA_WriteReg(tmp, PAR, 0U);
/* Reset DMAx_Streamy memory address register */
LL_DMA_WriteReg(tmp, M0AR, 0U);
/* Reset DMAx_Streamy memory address register */
LL_DMA_WriteReg(tmp, M1AR, 0U);
/* Reset DMAx_Streamy FIFO control register */
LL_DMA_WriteReg(tmp, FCR, 0x00000021U);
/* Reset Channel register field for DMAx Stream*/
LL_DMA_SetChannelSelection(DMAx, Stream, LL_DMA_CHANNEL_0);
if(Stream == LL_DMA_STREAM_0)
{
/* Reset the Stream0 pending flags */
DMAx->LIFCR = 0x0000003FU;
}
else if(Stream == LL_DMA_STREAM_1)
{
/* Reset the Stream1 pending flags */
DMAx->LIFCR = 0x00000F40U;
}
else if(Stream == LL_DMA_STREAM_2)
{
/* Reset the Stream2 pending flags */
DMAx->LIFCR = 0x003F0000U;
}
else if(Stream == LL_DMA_STREAM_3)
{
/* Reset the Stream3 pending flags */
DMAx->LIFCR = 0x0F400000U;
}
else if(Stream == LL_DMA_STREAM_4)
{
/* Reset the Stream4 pending flags */
DMAx->HIFCR = 0x0000003FU;
}
else if(Stream == LL_DMA_STREAM_5)
{
/* Reset the Stream5 pending flags */
DMAx->HIFCR = 0x00000F40U;
}
else if(Stream == LL_DMA_STREAM_6)
{
/* Reset the Stream6 pending flags */
DMAx->HIFCR = 0x003F0000U;
}
else if(Stream == LL_DMA_STREAM_7)
{
/* Reset the Stream7 pending flags */
DMAx->HIFCR = 0x0F400000U;
}
else
{
status = ERROR;
}
}
return status;
}
/**
* @brief Initialize the DMA registers according to the specified parameters in DMA_InitStruct.
* @note To convert DMAx_Streamy Instance to DMAx Instance and Streamy, use helper macros :
* @arg @ref __LL_DMA_GET_INSTANCE
* @arg @ref __LL_DMA_GET_STREAM
* @param DMAx DMAx Instance
* @param Stream This parameter can be one of the following values:
* @arg @ref LL_DMA_STREAM_0
* @arg @ref LL_DMA_STREAM_1
* @arg @ref LL_DMA_STREAM_2
* @arg @ref LL_DMA_STREAM_3
* @arg @ref LL_DMA_STREAM_4
* @arg @ref LL_DMA_STREAM_5
* @arg @ref LL_DMA_STREAM_6
* @arg @ref LL_DMA_STREAM_7
* @param DMA_InitStruct pointer to a @ref LL_DMA_InitTypeDef structure.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: DMA registers are initialized
* - ERROR: Not applicable
*/
uint32_t LL_DMA_Init(DMA_TypeDef *DMAx, uint32_t Stream, LL_DMA_InitTypeDef *DMA_InitStruct)
{
/* Check the DMA Instance DMAx and Stream parameters*/
assert_param(IS_LL_DMA_ALL_STREAM_INSTANCE(DMAx, Stream));
/* Check the DMA parameters from DMA_InitStruct */
assert_param(IS_LL_DMA_DIRECTION(DMA_InitStruct->Direction));
assert_param(IS_LL_DMA_MODE(DMA_InitStruct->Mode));
assert_param(IS_LL_DMA_PERIPHINCMODE(DMA_InitStruct->PeriphOrM2MSrcIncMode));
assert_param(IS_LL_DMA_MEMORYINCMODE(DMA_InitStruct->MemoryOrM2MDstIncMode));
assert_param(IS_LL_DMA_PERIPHDATASIZE(DMA_InitStruct->PeriphOrM2MSrcDataSize));
assert_param(IS_LL_DMA_MEMORYDATASIZE(DMA_InitStruct->MemoryOrM2MDstDataSize));
assert_param(IS_LL_DMA_NBDATA(DMA_InitStruct->NbData));
assert_param(IS_LL_DMA_CHANNEL(DMA_InitStruct->Channel));
assert_param(IS_LL_DMA_PRIORITY(DMA_InitStruct->Priority));
assert_param(IS_LL_DMA_FIFO_MODE_STATE(DMA_InitStruct->FIFOMode));
/* Check the memory burst, peripheral burst and FIFO threshold parameters only
when FIFO mode is enabled */
if(DMA_InitStruct->FIFOMode != LL_DMA_FIFOMODE_DISABLE)
{
assert_param(IS_LL_DMA_FIFO_THRESHOLD(DMA_InitStruct->FIFOThreshold));
assert_param(IS_LL_DMA_MEMORY_BURST(DMA_InitStruct->MemBurst));
assert_param(IS_LL_DMA_PERIPHERAL_BURST(DMA_InitStruct->PeriphBurst));
}
/*---------------------------- DMAx SxCR Configuration ------------------------
* Configure DMAx_Streamy: data transfer direction, data transfer mode,
* peripheral and memory increment mode,
* data size alignment and priority level with parameters :
* - Direction: DMA_SxCR_DIR[1:0] bits
* - Mode: DMA_SxCR_CIRC bit
* - PeriphOrM2MSrcIncMode: DMA_SxCR_PINC bit
* - MemoryOrM2MDstIncMode: DMA_SxCR_MINC bit
* - PeriphOrM2MSrcDataSize: DMA_SxCR_PSIZE[1:0] bits
* - MemoryOrM2MDstDataSize: DMA_SxCR_MSIZE[1:0] bits
* - Priority: DMA_SxCR_PL[1:0] bits
*/
LL_DMA_ConfigTransfer(DMAx, Stream, DMA_InitStruct->Direction | \
DMA_InitStruct->Mode | \
DMA_InitStruct->PeriphOrM2MSrcIncMode | \
DMA_InitStruct->MemoryOrM2MDstIncMode | \
DMA_InitStruct->PeriphOrM2MSrcDataSize | \
DMA_InitStruct->MemoryOrM2MDstDataSize | \
DMA_InitStruct->Priority
);
if(DMA_InitStruct->FIFOMode != LL_DMA_FIFOMODE_DISABLE)
{
/*---------------------------- DMAx SxFCR Configuration ------------------------
* Configure DMAx_Streamy: fifo mode and fifo threshold with parameters :
* - FIFOMode: DMA_SxFCR_DMDIS bit
* - FIFOThreshold: DMA_SxFCR_FTH[1:0] bits
*/
LL_DMA_ConfigFifo(DMAx, Stream, DMA_InitStruct->FIFOMode, DMA_InitStruct->FIFOThreshold);
/*---------------------------- DMAx SxCR Configuration --------------------------
* Configure DMAx_Streamy: memory burst transfer with parameters :
* - MemBurst: DMA_SxCR_MBURST[1:0] bits
*/
LL_DMA_SetMemoryBurstxfer(DMAx,Stream,DMA_InitStruct->MemBurst);
/*---------------------------- DMAx SxCR Configuration --------------------------
* Configure DMAx_Streamy: peripheral burst transfer with parameters :
* - PeriphBurst: DMA_SxCR_PBURST[1:0] bits
*/
LL_DMA_SetPeriphBurstxfer(DMAx,Stream,DMA_InitStruct->PeriphBurst);
}
/*-------------------------- DMAx SxM0AR Configuration --------------------------
* Configure the memory or destination base address with parameter :
* - MemoryOrM2MDstAddress: DMA_SxM0AR_M0A[31:0] bits
*/
LL_DMA_SetMemoryAddress(DMAx, Stream, DMA_InitStruct->MemoryOrM2MDstAddress);
/*-------------------------- DMAx SxPAR Configuration ---------------------------
* Configure the peripheral or source base address with parameter :
* - PeriphOrM2MSrcAddress: DMA_SxPAR_PA[31:0] bits
*/
LL_DMA_SetPeriphAddress(DMAx, Stream, DMA_InitStruct->PeriphOrM2MSrcAddress);
/*--------------------------- DMAx SxNDTR Configuration -------------------------
* Configure the peripheral base address with parameter :
* - NbData: DMA_SxNDT[15:0] bits
*/
LL_DMA_SetDataLength(DMAx, Stream, DMA_InitStruct->NbData);
/*--------------------------- DMA SxCR_CHSEL Configuration ----------------------
* Configure the peripheral base address with parameter :
* - PeriphRequest: DMA_SxCR_CHSEL[2:0] bits
*/
LL_DMA_SetChannelSelection(DMAx, Stream, DMA_InitStruct->Channel);
return SUCCESS;
}
/**
* @brief Set each @ref LL_DMA_InitTypeDef field to default value.
* @param DMA_InitStruct Pointer to a @ref LL_DMA_InitTypeDef structure.
* @retval None
*/
void LL_DMA_StructInit(LL_DMA_InitTypeDef *DMA_InitStruct)
{
/* Set DMA_InitStruct fields to default values */
DMA_InitStruct->PeriphOrM2MSrcAddress = 0x00000000U;
DMA_InitStruct->MemoryOrM2MDstAddress = 0x00000000U;
DMA_InitStruct->Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
DMA_InitStruct->Mode = LL_DMA_MODE_NORMAL;
DMA_InitStruct->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
DMA_InitStruct->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT;
DMA_InitStruct->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE;
DMA_InitStruct->MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
DMA_InitStruct->NbData = 0x00000000U;
DMA_InitStruct->Channel = LL_DMA_CHANNEL_0;
DMA_InitStruct->Priority = LL_DMA_PRIORITY_LOW;
DMA_InitStruct->FIFOMode = LL_DMA_FIFOMODE_DISABLE;
DMA_InitStruct->FIFOThreshold = LL_DMA_FIFOTHRESHOLD_1_4;
DMA_InitStruct->MemBurst = LL_DMA_MBURST_SINGLE;
DMA_InitStruct->PeriphBurst = LL_DMA_PBURST_SINGLE;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* DMA1 || DMA2 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,214 @@
/**
******************************************************************************
* @file stm32f4xx_ll_exti.c
* @author MCD Application Team
* @brief EXTI LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_exti.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (EXTI)
/** @defgroup EXTI_LL EXTI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup EXTI_LL_Private_Macros
* @{
*/
#define IS_LL_EXTI_LINE_0_31(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_0_31) == 0x00000000U)
#define IS_LL_EXTI_MODE(__VALUE__) (((__VALUE__) == LL_EXTI_MODE_IT) \
|| ((__VALUE__) == LL_EXTI_MODE_EVENT) \
|| ((__VALUE__) == LL_EXTI_MODE_IT_EVENT))
#define IS_LL_EXTI_TRIGGER(__VALUE__) (((__VALUE__) == LL_EXTI_TRIGGER_NONE) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_FALLING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING_FALLING))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_LL_Exported_Functions
* @{
*/
/** @addtogroup EXTI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the EXTI registers to their default reset values.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: EXTI registers are de-initialized
* - ERROR: not applicable
*/
uint32_t LL_EXTI_DeInit(void)
{
/* Interrupt mask register set to default reset values */
LL_EXTI_WriteReg(IMR, 0x00000000U);
/* Event mask register set to default reset values */
LL_EXTI_WriteReg(EMR, 0x00000000U);
/* Rising Trigger selection register set to default reset values */
LL_EXTI_WriteReg(RTSR, 0x00000000U);
/* Falling Trigger selection register set to default reset values */
LL_EXTI_WriteReg(FTSR, 0x00000000U);
/* Software interrupt event register set to default reset values */
LL_EXTI_WriteReg(SWIER, 0x00000000U);
/* Pending register set to default reset values */
LL_EXTI_WriteReg(PR, 0x00FFFFFFU);
return SUCCESS;
}
/**
* @brief Initialize the EXTI registers according to the specified parameters in EXTI_InitStruct.
* @param EXTI_InitStruct pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: EXTI registers are initialized
* - ERROR: not applicable
*/
uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
ErrorStatus status = SUCCESS;
/* Check the parameters */
assert_param(IS_LL_EXTI_LINE_0_31(EXTI_InitStruct->Line_0_31));
assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->LineCommand));
assert_param(IS_LL_EXTI_MODE(EXTI_InitStruct->Mode));
/* ENABLE LineCommand */
if (EXTI_InitStruct->LineCommand != DISABLE)
{
assert_param(IS_LL_EXTI_TRIGGER(EXTI_InitStruct->Trigger));
/* Configure EXTI Lines in range from 0 to 31 */
if (EXTI_InitStruct->Line_0_31 != LL_EXTI_LINE_NONE)
{
switch (EXTI_InitStruct->Mode)
{
case LL_EXTI_MODE_IT:
/* First Disable Event on provided Lines */
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_EVENT:
/* First Disable IT on provided Lines */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Event on provided Lines */
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_IT_EVENT:
/* Directly Enable IT & Event on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status = ERROR;
break;
}
if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE)
{
switch (EXTI_InitStruct->Trigger)
{
case LL_EXTI_TRIGGER_RISING:
/* First Disable Falling Trigger on provided Lines */
LL_EXTI_DisableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Rising Trigger on provided Lines */
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_FALLING:
/* First Disable Rising Trigger on provided Lines */
LL_EXTI_DisableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Falling Trigger on provided Lines */
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_RISING_FALLING:
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status = ERROR;
break;
}
}
}
}
/* DISABLE LineCommand */
else
{
/* De-configure EXTI Lines in range from 0 to 31 */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
}
return status;
}
/**
* @brief Set each @ref LL_EXTI_InitTypeDef field to default value.
* @param EXTI_InitStruct Pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval None
*/
void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
EXTI_InitStruct->Line_0_31 = LL_EXTI_LINE_NONE;
EXTI_InitStruct->LineCommand = DISABLE;
EXTI_InitStruct->Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct->Trigger = LL_EXTI_TRIGGER_FALLING;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (EXTI) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,305 @@
/**
******************************************************************************
* @file stm32f4xx_ll_gpio.c
* @author MCD Application Team
* @brief GPIO LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_gpio.h"
#include "stm32f4xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOF) || defined (GPIOG) || defined (GPIOH) || defined (GPIOI) || defined (GPIOJ) || defined (GPIOK)
/** @addtogroup GPIO_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup GPIO_LL_Private_Macros
* @{
*/
#define IS_LL_GPIO_PIN(__VALUE__) (((0x00000000U) < (__VALUE__)) && ((__VALUE__) <= (LL_GPIO_PIN_ALL)))
#define IS_LL_GPIO_MODE(__VALUE__) (((__VALUE__) == LL_GPIO_MODE_INPUT) ||\
((__VALUE__) == LL_GPIO_MODE_OUTPUT) ||\
((__VALUE__) == LL_GPIO_MODE_ALTERNATE) ||\
((__VALUE__) == LL_GPIO_MODE_ANALOG))
#define IS_LL_GPIO_OUTPUT_TYPE(__VALUE__) (((__VALUE__) == LL_GPIO_OUTPUT_PUSHPULL) ||\
((__VALUE__) == LL_GPIO_OUTPUT_OPENDRAIN))
#define IS_LL_GPIO_SPEED(__VALUE__) (((__VALUE__) == LL_GPIO_SPEED_FREQ_LOW) ||\
((__VALUE__) == LL_GPIO_SPEED_FREQ_MEDIUM) ||\
((__VALUE__) == LL_GPIO_SPEED_FREQ_HIGH) ||\
((__VALUE__) == LL_GPIO_SPEED_FREQ_VERY_HIGH))
#define IS_LL_GPIO_PULL(__VALUE__) (((__VALUE__) == LL_GPIO_PULL_NO) ||\
((__VALUE__) == LL_GPIO_PULL_UP) ||\
((__VALUE__) == LL_GPIO_PULL_DOWN))
#define IS_LL_GPIO_ALTERNATE(__VALUE__) (((__VALUE__) == LL_GPIO_AF_0 ) ||\
((__VALUE__) == LL_GPIO_AF_1 ) ||\
((__VALUE__) == LL_GPIO_AF_2 ) ||\
((__VALUE__) == LL_GPIO_AF_3 ) ||\
((__VALUE__) == LL_GPIO_AF_4 ) ||\
((__VALUE__) == LL_GPIO_AF_5 ) ||\
((__VALUE__) == LL_GPIO_AF_6 ) ||\
((__VALUE__) == LL_GPIO_AF_7 ) ||\
((__VALUE__) == LL_GPIO_AF_8 ) ||\
((__VALUE__) == LL_GPIO_AF_9 ) ||\
((__VALUE__) == LL_GPIO_AF_10 ) ||\
((__VALUE__) == LL_GPIO_AF_11 ) ||\
((__VALUE__) == LL_GPIO_AF_12 ) ||\
((__VALUE__) == LL_GPIO_AF_13 ) ||\
((__VALUE__) == LL_GPIO_AF_14 ) ||\
((__VALUE__) == LL_GPIO_AF_15 ))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup GPIO_LL_Exported_Functions
* @{
*/
/** @addtogroup GPIO_LL_EF_Init
* @{
*/
/**
* @brief De-initialize GPIO registers (Registers restored to their default values).
* @param GPIOx GPIO Port
* @retval An ErrorStatus enumeration value:
* - SUCCESS: GPIO registers are de-initialized
* - ERROR: Wrong GPIO Port
*/
ErrorStatus LL_GPIO_DeInit(GPIO_TypeDef *GPIOx)
{
ErrorStatus status = SUCCESS;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
/* Force and Release reset on clock of GPIOx Port */
if (GPIOx == GPIOA)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOA);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOA);
}
else if (GPIOx == GPIOB)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOB);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOB);
}
else if (GPIOx == GPIOC)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOC);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOC);
}
#if defined(GPIOD)
else if (GPIOx == GPIOD)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOD);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOD);
}
#endif /* GPIOD */
#if defined(GPIOE)
else if (GPIOx == GPIOE)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOE);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOE);
}
#endif /* GPIOE */
#if defined(GPIOF)
else if (GPIOx == GPIOF)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOF);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOF);
}
#endif /* GPIOF */
#if defined(GPIOG)
else if (GPIOx == GPIOG)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOG);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOG);
}
#endif /* GPIOG */
#if defined(GPIOH)
else if (GPIOx == GPIOH)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOH);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOH);
}
#endif /* GPIOH */
#if defined(GPIOI)
else if (GPIOx == GPIOI)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOI);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOI);
}
#endif /* GPIOI */
#if defined(GPIOJ)
else if (GPIOx == GPIOJ)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOJ);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOJ);
}
#endif /* GPIOJ */
#if defined(GPIOK)
else if (GPIOx == GPIOK)
{
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOK);
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOK);
}
#endif /* GPIOK */
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Initialize GPIO registers according to the specified parameters in GPIO_InitStruct.
* @param GPIOx GPIO Port
* @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure
* that contains the configuration information for the specified GPIO peripheral.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: GPIO registers are initialized according to GPIO_InitStruct content
* - ERROR: Not applicable
*/
ErrorStatus LL_GPIO_Init(GPIO_TypeDef *GPIOx, LL_GPIO_InitTypeDef *GPIO_InitStruct)
{
uint32_t pinpos = 0x00000000U;
uint32_t currentpin = 0x00000000U;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_LL_GPIO_PIN(GPIO_InitStruct->Pin));
assert_param(IS_LL_GPIO_MODE(GPIO_InitStruct->Mode));
assert_param(IS_LL_GPIO_PULL(GPIO_InitStruct->Pull));
/* ------------------------- Configure the port pins ---------------- */
/* Initialize pinpos on first pin set */
pinpos = POSITION_VAL(GPIO_InitStruct->Pin);
/* Configure the port pins */
while (((GPIO_InitStruct->Pin) >> pinpos) != 0x00000000U)
{
/* Get current io position */
currentpin = (GPIO_InitStruct->Pin) & (0x00000001U << pinpos);
if (currentpin)
{
if ((GPIO_InitStruct->Mode == LL_GPIO_MODE_OUTPUT) || (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE))
{
/* Check Speed mode parameters */
assert_param(IS_LL_GPIO_SPEED(GPIO_InitStruct->Speed));
/* Speed mode configuration */
LL_GPIO_SetPinSpeed(GPIOx, currentpin, GPIO_InitStruct->Speed);
/* Check Output mode parameters */
assert_param(IS_LL_GPIO_OUTPUT_TYPE(GPIO_InitStruct->OutputType));
/* Output mode configuration*/
LL_GPIO_SetPinOutputType(GPIOx, currentpin, GPIO_InitStruct->OutputType);
}
/* Pull-up Pull down resistor configuration*/
LL_GPIO_SetPinPull(GPIOx, currentpin, GPIO_InitStruct->Pull);
if (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE)
{
/* Check Alternate parameter */
assert_param(IS_LL_GPIO_ALTERNATE(GPIO_InitStruct->Alternate));
/* Speed mode configuration */
if (POSITION_VAL(currentpin) < 0x00000008U)
{
LL_GPIO_SetAFPin_0_7(GPIOx, currentpin, GPIO_InitStruct->Alternate);
}
else
{
LL_GPIO_SetAFPin_8_15(GPIOx, currentpin, GPIO_InitStruct->Alternate);
}
}
/* Pin Mode configuration */
LL_GPIO_SetPinMode(GPIOx, currentpin, GPIO_InitStruct->Mode);
}
pinpos++;
}
return (SUCCESS);
}
/**
* @brief Set each @ref LL_GPIO_InitTypeDef field to default value.
* @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_GPIO_StructInit(LL_GPIO_InitTypeDef *GPIO_InitStruct)
{
/* Reset GPIO init structure parameters values */
GPIO_InitStruct->Pin = LL_GPIO_PIN_ALL;
GPIO_InitStruct->Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct->Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct->OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct->Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct->Alternate = LL_GPIO_AF_0;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOF) || defined (GPIOG) || defined (GPIOH) || defined (GPIOI) || defined (GPIOJ) || defined (GPIOK) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,626 @@
/**
******************************************************************************
* @file stm32f4xx_ll_spi.c
* @author MCD Application Team
* @brief SPI LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_spi.h"
#include "stm32f4xx_ll_bus.h"
#include "stm32f4xx_ll_rcc.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)
/** @addtogroup SPI_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Constants SPI Private Constants
* @{
*/
/* SPI registers Masks */
#define SPI_CR1_CLEAR_MASK (SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_MSTR | \
SPI_CR1_BR | SPI_CR1_LSBFIRST | SPI_CR1_SSI | \
SPI_CR1_SSM | SPI_CR1_RXONLY | SPI_CR1_DFF | \
SPI_CR1_CRCNEXT | SPI_CR1_CRCEN | SPI_CR1_BIDIOE | \
SPI_CR1_BIDIMODE)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Macros SPI Private Macros
* @{
*/
#define IS_LL_SPI_TRANSFER_DIRECTION(__VALUE__) (((__VALUE__) == LL_SPI_FULL_DUPLEX) \
|| ((__VALUE__) == LL_SPI_SIMPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_TX))
#define IS_LL_SPI_MODE(__VALUE__) (((__VALUE__) == LL_SPI_MODE_MASTER) \
|| ((__VALUE__) == LL_SPI_MODE_SLAVE))
#define IS_LL_SPI_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_SPI_DATAWIDTH_8BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_16BIT))
#define IS_LL_SPI_POLARITY(__VALUE__) (((__VALUE__) == LL_SPI_POLARITY_LOW) \
|| ((__VALUE__) == LL_SPI_POLARITY_HIGH))
#define IS_LL_SPI_PHASE(__VALUE__) (((__VALUE__) == LL_SPI_PHASE_1EDGE) \
|| ((__VALUE__) == LL_SPI_PHASE_2EDGE))
#define IS_LL_SPI_NSS(__VALUE__) (((__VALUE__) == LL_SPI_NSS_SOFT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_INPUT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_OUTPUT))
#define IS_LL_SPI_BAUDRATE(__VALUE__) (((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV2) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV4) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV8) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV16) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV32) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV64) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV128) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV256))
#define IS_LL_SPI_BITORDER(__VALUE__) (((__VALUE__) == LL_SPI_LSB_FIRST) \
|| ((__VALUE__) == LL_SPI_MSB_FIRST))
#define IS_LL_SPI_CRCCALCULATION(__VALUE__) (((__VALUE__) == LL_SPI_CRCCALCULATION_ENABLE) \
|| ((__VALUE__) == LL_SPI_CRCCALCULATION_DISABLE))
#define IS_LL_SPI_CRC_POLYNOMIAL(__VALUE__) ((__VALUE__) >= 0x1U)
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPI_LL_Exported_Functions
* @{
*/
/** @addtogroup SPI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the SPI registers to their default reset values.
* @param SPIx SPI Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are de-initialized
* - ERROR: SPI registers are not de-initialized
*/
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx)
{
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
#if defined(SPI1)
if (SPIx == SPI1)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI1);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI1);
status = SUCCESS;
}
#endif /* SPI1 */
#if defined(SPI2)
if (SPIx == SPI2)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI2);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI2);
status = SUCCESS;
}
#endif /* SPI2 */
#if defined(SPI3)
if (SPIx == SPI3)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI3);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI3);
status = SUCCESS;
}
#endif /* SPI3 */
#if defined(SPI4)
if (SPIx == SPI4)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI4);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI4);
status = SUCCESS;
}
#endif /* SPI4 */
#if defined(SPI5)
if (SPIx == SPI5)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI5);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI5);
status = SUCCESS;
}
#endif /* SPI5 */
#if defined(SPI6)
if (SPIx == SPI6)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI6);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI6);
status = SUCCESS;
}
#endif /* SPI6 */
return status;
}
/**
* @brief Initialize the SPI registers according to the specified parameters in SPI_InitStruct.
* @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0),
* SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param SPIx SPI Instance
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* @retval An ErrorStatus enumeration value. (Return always SUCCESS)
*/
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct)
{
ErrorStatus status = ERROR;
/* Check the SPI Instance SPIx*/
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
/* Check the SPI parameters from SPI_InitStruct*/
assert_param(IS_LL_SPI_TRANSFER_DIRECTION(SPI_InitStruct->TransferDirection));
assert_param(IS_LL_SPI_MODE(SPI_InitStruct->Mode));
assert_param(IS_LL_SPI_DATAWIDTH(SPI_InitStruct->DataWidth));
assert_param(IS_LL_SPI_POLARITY(SPI_InitStruct->ClockPolarity));
assert_param(IS_LL_SPI_PHASE(SPI_InitStruct->ClockPhase));
assert_param(IS_LL_SPI_NSS(SPI_InitStruct->NSS));
assert_param(IS_LL_SPI_BAUDRATE(SPI_InitStruct->BaudRate));
assert_param(IS_LL_SPI_BITORDER(SPI_InitStruct->BitOrder));
assert_param(IS_LL_SPI_CRCCALCULATION(SPI_InitStruct->CRCCalculation));
if (LL_SPI_IsEnabled(SPIx) == 0x00000000U)
{
/*---------------------------- SPIx CR1 Configuration ------------------------
* Configure SPIx CR1 with parameters:
* - TransferDirection: SPI_CR1_BIDIMODE, SPI_CR1_BIDIOE and SPI_CR1_RXONLY bits
* - Master/Slave Mode: SPI_CR1_MSTR bit
* - DataWidth: SPI_CR1_DFF bit
* - ClockPolarity: SPI_CR1_CPOL bit
* - ClockPhase: SPI_CR1_CPHA bit
* - NSS management: SPI_CR1_SSM bit
* - BaudRate prescaler: SPI_CR1_BR[2:0] bits
* - BitOrder: SPI_CR1_LSBFIRST bit
* - CRCCalculation: SPI_CR1_CRCEN bit
*/
MODIFY_REG(SPIx->CR1,
SPI_CR1_CLEAR_MASK,
SPI_InitStruct->TransferDirection | SPI_InitStruct->Mode | SPI_InitStruct->DataWidth |
SPI_InitStruct->ClockPolarity | SPI_InitStruct->ClockPhase |
SPI_InitStruct->NSS | SPI_InitStruct->BaudRate |
SPI_InitStruct->BitOrder | SPI_InitStruct->CRCCalculation);
/*---------------------------- SPIx CR2 Configuration ------------------------
* Configure SPIx CR2 with parameters:
* - NSS management: SSOE bit
*/
MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, (SPI_InitStruct->NSS >> 16U));
/*---------------------------- SPIx CRCPR Configuration ----------------------
* Configure SPIx CRCPR with parameters:
* - CRCPoly: CRCPOLY[15:0] bits
*/
if (SPI_InitStruct->CRCCalculation == LL_SPI_CRCCALCULATION_ENABLE)
{
assert_param(IS_LL_SPI_CRC_POLYNOMIAL(SPI_InitStruct->CRCPoly));
LL_SPI_SetCRCPolynomial(SPIx, SPI_InitStruct->CRCPoly);
}
status = SUCCESS;
}
/* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD);
return status;
}
/**
* @brief Set each @ref LL_SPI_InitTypeDef field to default value.
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct)
{
/* Set SPI_InitStruct fields to default values */
SPI_InitStruct->TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct->Mode = LL_SPI_MODE_SLAVE;
SPI_InitStruct->DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct->ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct->ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct->NSS = LL_SPI_NSS_HARD_INPUT;
SPI_InitStruct->BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2;
SPI_InitStruct->BitOrder = LL_SPI_MSB_FIRST;
SPI_InitStruct->CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
SPI_InitStruct->CRCPoly = 7U;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/** @addtogroup I2S_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2S_LL_Private_Constants I2S Private Constants
* @{
*/
/* I2S registers Masks */
#define I2S_I2SCFGR_CLEAR_MASK (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | \
SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_I2SSTD | \
SPI_I2SCFGR_I2SCFG | SPI_I2SCFGR_I2SMOD )
#define I2S_I2SPR_CLEAR_MASK 0x0002U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2S_LL_Private_Macros I2S Private Macros
* @{
*/
#define IS_LL_I2S_DATAFORMAT(__VALUE__) (((__VALUE__) == LL_I2S_DATAFORMAT_16B) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_16B_EXTENDED) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_24B) \
|| ((__VALUE__) == LL_I2S_DATAFORMAT_32B))
#define IS_LL_I2S_CPOL(__VALUE__) (((__VALUE__) == LL_I2S_POLARITY_LOW) \
|| ((__VALUE__) == LL_I2S_POLARITY_HIGH))
#define IS_LL_I2S_STANDARD(__VALUE__) (((__VALUE__) == LL_I2S_STANDARD_PHILIPS) \
|| ((__VALUE__) == LL_I2S_STANDARD_MSB) \
|| ((__VALUE__) == LL_I2S_STANDARD_LSB) \
|| ((__VALUE__) == LL_I2S_STANDARD_PCM_SHORT) \
|| ((__VALUE__) == LL_I2S_STANDARD_PCM_LONG))
#define IS_LL_I2S_MODE(__VALUE__) (((__VALUE__) == LL_I2S_MODE_SLAVE_TX) \
|| ((__VALUE__) == LL_I2S_MODE_SLAVE_RX) \
|| ((__VALUE__) == LL_I2S_MODE_MASTER_TX) \
|| ((__VALUE__) == LL_I2S_MODE_MASTER_RX))
#define IS_LL_I2S_MCLK_OUTPUT(__VALUE__) (((__VALUE__) == LL_I2S_MCLK_OUTPUT_ENABLE) \
|| ((__VALUE__) == LL_I2S_MCLK_OUTPUT_DISABLE))
#define IS_LL_I2S_AUDIO_FREQ(__VALUE__) ((((__VALUE__) >= LL_I2S_AUDIOFREQ_8K) \
&& ((__VALUE__) <= LL_I2S_AUDIOFREQ_192K)) \
|| ((__VALUE__) == LL_I2S_AUDIOFREQ_DEFAULT))
#define IS_LL_I2S_PRESCALER_LINEAR(__VALUE__) ((__VALUE__) >= 0x2U)
#define IS_LL_I2S_PRESCALER_PARITY(__VALUE__) (((__VALUE__) == LL_I2S_PRESCALER_PARITY_EVEN) \
|| ((__VALUE__) == LL_I2S_PRESCALER_PARITY_ODD))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2S_LL_Exported_Functions
* @{
*/
/** @addtogroup I2S_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the SPI/I2S registers to their default reset values.
* @param SPIx SPI Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are de-initialized
* - ERROR: SPI registers are not de-initialized
*/
ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx)
{
return LL_SPI_DeInit(SPIx);
}
/**
* @brief Initializes the SPI/I2S registers according to the specified parameters in I2S_InitStruct.
* @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0),
* SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param SPIx SPI Instance
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are Initialized
* - ERROR: SPI registers are not Initialized
*/
ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct)
{
uint32_t i2sdiv = 2U;
uint32_t i2sodd = 0U;
uint32_t packetlength = 1U;
uint32_t tmp;
uint32_t sourceclock;
ErrorStatus status = ERROR;
/* Check the I2S parameters */
assert_param(IS_I2S_ALL_INSTANCE(SPIx));
assert_param(IS_LL_I2S_MODE(I2S_InitStruct->Mode));
assert_param(IS_LL_I2S_STANDARD(I2S_InitStruct->Standard));
assert_param(IS_LL_I2S_DATAFORMAT(I2S_InitStruct->DataFormat));
assert_param(IS_LL_I2S_MCLK_OUTPUT(I2S_InitStruct->MCLKOutput));
assert_param(IS_LL_I2S_AUDIO_FREQ(I2S_InitStruct->AudioFreq));
assert_param(IS_LL_I2S_CPOL(I2S_InitStruct->ClockPolarity));
if (LL_I2S_IsEnabled(SPIx) == 0x00000000U)
{
/*---------------------------- SPIx I2SCFGR Configuration --------------------
* Configure SPIx I2SCFGR with parameters:
* - Mode: SPI_I2SCFGR_I2SCFG[1:0] bit
* - Standard: SPI_I2SCFGR_I2SSTD[1:0] and SPI_I2SCFGR_PCMSYNC bits
* - DataFormat: SPI_I2SCFGR_CHLEN and SPI_I2SCFGR_DATLEN bits
* - ClockPolarity: SPI_I2SCFGR_CKPOL bit
*/
/* Write to SPIx I2SCFGR */
MODIFY_REG(SPIx->I2SCFGR,
I2S_I2SCFGR_CLEAR_MASK,
I2S_InitStruct->Mode | I2S_InitStruct->Standard |
I2S_InitStruct->DataFormat | I2S_InitStruct->ClockPolarity |
SPI_I2SCFGR_I2SMOD);
/*---------------------------- SPIx I2SPR Configuration ----------------------
* Configure SPIx I2SPR with parameters:
* - MCLKOutput: SPI_I2SPR_MCKOE bit
* - AudioFreq: SPI_I2SPR_I2SDIV[7:0] and SPI_I2SPR_ODD bits
*/
/* If the requested audio frequency is not the default, compute the prescaler (i2sodd, i2sdiv)
* else, default values are used: i2sodd = 0U, i2sdiv = 2U.
*/
if (I2S_InitStruct->AudioFreq != LL_I2S_AUDIOFREQ_DEFAULT)
{
/* Check the frame length (For the Prescaler computing)
* Default value: LL_I2S_DATAFORMAT_16B (packetlength = 1U).
*/
if (I2S_InitStruct->DataFormat != LL_I2S_DATAFORMAT_16B)
{
/* Packet length is 32 bits */
packetlength = 2U;
}
/* If an external I2S clock has to be used, the specific define should be set
in the project configuration or in the stm32f4xx_ll_rcc.h file */
/* Get the I2S source clock value */
sourceclock = LL_RCC_GetI2SClockFreq(LL_RCC_I2S1_CLKSOURCE);
/* Compute the Real divider depending on the MCLK output state with a floating point */
if (I2S_InitStruct->MCLKOutput == LL_I2S_MCLK_OUTPUT_ENABLE)
{
/* MCLK output is enabled */
tmp = (((((sourceclock / 256U) * 10U) / I2S_InitStruct->AudioFreq)) + 5U);
}
else
{
/* MCLK output is disabled */
tmp = (((((sourceclock / (32U * packetlength)) * 10U) / I2S_InitStruct->AudioFreq)) + 5U);
}
/* Remove the floating point */
tmp = tmp / 10U;
/* Check the parity of the divider */
i2sodd = (tmp & (uint16_t)0x0001U);
/* Compute the i2sdiv prescaler */
i2sdiv = ((tmp - i2sodd) / 2U);
/* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
i2sodd = (i2sodd << 8U);
}
/* Test if the divider is 1 or 0 or greater than 0xFF */
if ((i2sdiv < 2U) || (i2sdiv > 0xFFU))
{
/* Set the default values */
i2sdiv = 2U;
i2sodd = 0U;
}
/* Write to SPIx I2SPR register the computed value */
WRITE_REG(SPIx->I2SPR, i2sdiv | i2sodd | I2S_InitStruct->MCLKOutput);
status = SUCCESS;
}
return status;
}
/**
* @brief Set each @ref LL_I2S_InitTypeDef field to default value.
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct)
{
/*--------------- Reset I2S init structure parameters values -----------------*/
I2S_InitStruct->Mode = LL_I2S_MODE_SLAVE_TX;
I2S_InitStruct->Standard = LL_I2S_STANDARD_PHILIPS;
I2S_InitStruct->DataFormat = LL_I2S_DATAFORMAT_16B;
I2S_InitStruct->MCLKOutput = LL_I2S_MCLK_OUTPUT_DISABLE;
I2S_InitStruct->AudioFreq = LL_I2S_AUDIOFREQ_DEFAULT;
I2S_InitStruct->ClockPolarity = LL_I2S_POLARITY_LOW;
}
/**
* @brief Set linear and parity prescaler.
* @note To calculate value of PrescalerLinear(I2SDIV[7:0] bits) and PrescalerParity(ODD bit)\n
* Check Audio frequency table and formulas inside Reference Manual (SPI/I2S).
* @param SPIx SPI Instance
* @param PrescalerLinear value Min_Data=0x02 and Max_Data=0xFF.
* @param PrescalerParity This parameter can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
* @retval None
*/
void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity)
{
/* Check the I2S parameters */
assert_param(IS_I2S_ALL_INSTANCE(SPIx));
assert_param(IS_LL_I2S_PRESCALER_LINEAR(PrescalerLinear));
assert_param(IS_LL_I2S_PRESCALER_PARITY(PrescalerParity));
/* Write to SPIx I2SPR */
MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV | SPI_I2SPR_ODD, PrescalerLinear | (PrescalerParity << 8U));
}
#if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
/**
* @brief Configures the full duplex mode for the I2Sx peripheral using its extension
* I2Sxext according to the specified parameters in the I2S_InitStruct.
* @note The structure pointed by I2S_InitStruct parameter should be the same
* used for the master I2S peripheral. In this case, if the master is
* configured as transmitter, the slave will be receiver and vice versa.
* Or you can force a different mode by modifying the field I2S_Mode to the
* value I2S_SlaveRx or I2S_SlaveTx independently of the master configuration.
* @param I2Sxext SPI Instance
* @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: I2Sxext registers are Initialized
* - ERROR: I2Sxext registers are not Initialized
*/
ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct)
{
uint32_t mode = 0U;
ErrorStatus status = ERROR;
/* Check the I2S parameters */
assert_param(IS_I2S_EXT_ALL_INSTANCE(I2Sxext));
assert_param(IS_LL_I2S_MODE(I2S_InitStruct->Mode));
assert_param(IS_LL_I2S_STANDARD(I2S_InitStruct->Standard));
assert_param(IS_LL_I2S_DATAFORMAT(I2S_InitStruct->DataFormat));
assert_param(IS_LL_I2S_CPOL(I2S_InitStruct->ClockPolarity));
if (LL_I2S_IsEnabled(I2Sxext) == 0x00000000U)
{
/*---------------------------- SPIx I2SCFGR Configuration --------------------
* Configure SPIx I2SCFGR with parameters:
* - Mode: SPI_I2SCFGR_I2SCFG[1:0] bit
* - Standard: SPI_I2SCFGR_I2SSTD[1:0] and SPI_I2SCFGR_PCMSYNC bits
* - DataFormat: SPI_I2SCFGR_CHLEN and SPI_I2SCFGR_DATLEN bits
* - ClockPolarity: SPI_I2SCFGR_CKPOL bit
*/
/* Reset I2SPR registers */
WRITE_REG(I2Sxext->I2SPR, I2S_I2SPR_CLEAR_MASK);
/* Get the mode to be configured for the extended I2S */
if ((I2S_InitStruct->Mode == LL_I2S_MODE_MASTER_TX) || (I2S_InitStruct->Mode == LL_I2S_MODE_SLAVE_TX))
{
mode = LL_I2S_MODE_SLAVE_RX;
}
else
{
if ((I2S_InitStruct->Mode == LL_I2S_MODE_MASTER_RX) || (I2S_InitStruct->Mode == LL_I2S_MODE_SLAVE_RX))
{
mode = LL_I2S_MODE_SLAVE_TX;
}
}
/* Write to SPIx I2SCFGR */
MODIFY_REG(I2Sxext->I2SCFGR,
I2S_I2SCFGR_CLEAR_MASK,
I2S_InitStruct->Standard |
I2S_InitStruct->DataFormat | I2S_InitStruct->ClockPolarity |
SPI_I2SCFGR_I2SMOD | mode);
status = SUCCESS;
}
return status;
}
#endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,502 @@
/**
******************************************************************************
* @file stm32f4xx_ll_usart.c
* @author MCD Application Team
* @brief USART LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_usart.h"
#include "stm32f4xx_ll_rcc.h"
#include "stm32f4xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
#if defined (USART1) || defined (USART2) || defined (USART3) || defined (USART6) || defined (UART4) || defined (UART5) || defined (UART7) || defined (UART8) || defined (UART9) || defined (UART10)
/** @addtogroup USART_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup USART_LL_Private_Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup USART_LL_Private_Macros
* @{
*/
/* __BAUDRATE__ The maximum Baud Rate is derived from the maximum clock available
* divided by the smallest oversampling used on the USART (i.e. 8) */
#define IS_LL_USART_BAUDRATE(__BAUDRATE__) ((__BAUDRATE__) <= 12500000U)
/* __VALUE__ In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d. */
#define IS_LL_USART_BRR_MIN(__VALUE__) ((__VALUE__) >= 16U)
#define IS_LL_USART_DIRECTION(__VALUE__) (((__VALUE__) == LL_USART_DIRECTION_NONE) \
|| ((__VALUE__) == LL_USART_DIRECTION_RX) \
|| ((__VALUE__) == LL_USART_DIRECTION_TX) \
|| ((__VALUE__) == LL_USART_DIRECTION_TX_RX))
#define IS_LL_USART_PARITY(__VALUE__) (((__VALUE__) == LL_USART_PARITY_NONE) \
|| ((__VALUE__) == LL_USART_PARITY_EVEN) \
|| ((__VALUE__) == LL_USART_PARITY_ODD))
#define IS_LL_USART_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_USART_DATAWIDTH_8B) \
|| ((__VALUE__) == LL_USART_DATAWIDTH_9B))
#define IS_LL_USART_OVERSAMPLING(__VALUE__) (((__VALUE__) == LL_USART_OVERSAMPLING_16) \
|| ((__VALUE__) == LL_USART_OVERSAMPLING_8))
#define IS_LL_USART_LASTBITCLKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_LASTCLKPULSE_NO_OUTPUT) \
|| ((__VALUE__) == LL_USART_LASTCLKPULSE_OUTPUT))
#define IS_LL_USART_CLOCKPHASE(__VALUE__) (((__VALUE__) == LL_USART_PHASE_1EDGE) \
|| ((__VALUE__) == LL_USART_PHASE_2EDGE))
#define IS_LL_USART_CLOCKPOLARITY(__VALUE__) (((__VALUE__) == LL_USART_POLARITY_LOW) \
|| ((__VALUE__) == LL_USART_POLARITY_HIGH))
#define IS_LL_USART_CLOCKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_CLOCK_DISABLE) \
|| ((__VALUE__) == LL_USART_CLOCK_ENABLE))
#define IS_LL_USART_STOPBITS(__VALUE__) (((__VALUE__) == LL_USART_STOPBITS_0_5) \
|| ((__VALUE__) == LL_USART_STOPBITS_1) \
|| ((__VALUE__) == LL_USART_STOPBITS_1_5) \
|| ((__VALUE__) == LL_USART_STOPBITS_2))
#define IS_LL_USART_HWCONTROL(__VALUE__) (((__VALUE__) == LL_USART_HWCONTROL_NONE) \
|| ((__VALUE__) == LL_USART_HWCONTROL_RTS) \
|| ((__VALUE__) == LL_USART_HWCONTROL_CTS) \
|| ((__VALUE__) == LL_USART_HWCONTROL_RTS_CTS))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup USART_LL_Exported_Functions
* @{
*/
/** @addtogroup USART_LL_EF_Init
* @{
*/
/**
* @brief De-initialize USART registers (Registers restored to their default values).
* @param USARTx USART Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: USART registers are de-initialized
* - ERROR: USART registers are not de-initialized
*/
ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx)
{
ErrorStatus status = SUCCESS;
/* Check the parameters */
assert_param(IS_UART_INSTANCE(USARTx));
if (USARTx == USART1)
{
/* Force reset of USART clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_USART1);
/* Release reset of USART clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_USART1);
}
else if (USARTx == USART2)
{
/* Force reset of USART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART2);
/* Release reset of USART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART2);
}
#if defined(USART3)
else if (USARTx == USART3)
{
/* Force reset of USART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART3);
/* Release reset of USART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART3);
}
#endif /* USART3 */
#if defined(USART6)
else if (USARTx == USART6)
{
/* Force reset of USART clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_USART6);
/* Release reset of USART clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_USART6);
}
#endif /* USART6 */
#if defined(UART4)
else if (USARTx == UART4)
{
/* Force reset of UART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_UART4);
/* Release reset of UART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_UART4);
}
#endif /* UART4 */
#if defined(UART5)
else if (USARTx == UART5)
{
/* Force reset of UART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_UART5);
/* Release reset of UART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_UART5);
}
#endif /* UART5 */
#if defined(UART7)
else if (USARTx == UART7)
{
/* Force reset of UART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_UART7);
/* Release reset of UART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_UART7);
}
#endif /* UART7 */
#if defined(UART8)
else if (USARTx == UART8)
{
/* Force reset of UART clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_UART8);
/* Release reset of UART clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_UART8);
}
#endif /* UART8 */
#if defined(UART9)
else if (USARTx == UART9)
{
/* Force reset of UART clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_UART9);
/* Release reset of UART clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_UART9);
}
#endif /* UART9 */
#if defined(UART10)
else if (USARTx == UART10)
{
/* Force reset of UART clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_UART10);
/* Release reset of UART clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_UART10);
}
#endif /* UART10 */
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Initialize USART registers according to the specified
* parameters in USART_InitStruct.
* @note As some bits in USART configuration registers can only be written when the USART is disabled (USART_CR1_UE bit =0),
* USART IP should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @note Baud rate value stored in USART_InitStruct BaudRate field, should be valid (different from 0).
* @param USARTx USART Instance
* @param USART_InitStruct pointer to a LL_USART_InitTypeDef structure
* that contains the configuration information for the specified USART peripheral.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: USART registers are initialized according to USART_InitStruct content
* - ERROR: Problem occurred during USART Registers initialization
*/
ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct)
{
ErrorStatus status = ERROR;
uint32_t periphclk = LL_RCC_PERIPH_FREQUENCY_NO;
LL_RCC_ClocksTypeDef rcc_clocks;
/* Check the parameters */
assert_param(IS_UART_INSTANCE(USARTx));
assert_param(IS_LL_USART_BAUDRATE(USART_InitStruct->BaudRate));
assert_param(IS_LL_USART_DATAWIDTH(USART_InitStruct->DataWidth));
assert_param(IS_LL_USART_STOPBITS(USART_InitStruct->StopBits));
assert_param(IS_LL_USART_PARITY(USART_InitStruct->Parity));
assert_param(IS_LL_USART_DIRECTION(USART_InitStruct->TransferDirection));
assert_param(IS_LL_USART_HWCONTROL(USART_InitStruct->HardwareFlowControl));
assert_param(IS_LL_USART_OVERSAMPLING(USART_InitStruct->OverSampling));
/* USART needs to be in disabled state, in order to be able to configure some bits in
CRx registers */
if (LL_USART_IsEnabled(USARTx) == 0U)
{
/*---------------------------- USART CR1 Configuration -----------------------
* Configure USARTx CR1 (USART Word Length, Parity, Mode and Oversampling bits) with parameters:
* - DataWidth: USART_CR1_M bits according to USART_InitStruct->DataWidth value
* - Parity: USART_CR1_PCE, USART_CR1_PS bits according to USART_InitStruct->Parity value
* - TransferDirection: USART_CR1_TE, USART_CR1_RE bits according to USART_InitStruct->TransferDirection value
* - Oversampling: USART_CR1_OVER8 bit according to USART_InitStruct->OverSampling value.
*/
MODIFY_REG(USARTx->CR1,
(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS |
USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
(USART_InitStruct->DataWidth | USART_InitStruct->Parity |
USART_InitStruct->TransferDirection | USART_InitStruct->OverSampling));
/*---------------------------- USART CR2 Configuration -----------------------
* Configure USARTx CR2 (Stop bits) with parameters:
* - Stop Bits: USART_CR2_STOP bits according to USART_InitStruct->StopBits value.
* - CLKEN, CPOL, CPHA and LBCL bits are to be configured using LL_USART_ClockInit().
*/
LL_USART_SetStopBitsLength(USARTx, USART_InitStruct->StopBits);
/*---------------------------- USART CR3 Configuration -----------------------
* Configure USARTx CR3 (Hardware Flow Control) with parameters:
* - HardwareFlowControl: USART_CR3_RTSE, USART_CR3_CTSE bits according to USART_InitStruct->HardwareFlowControl value.
*/
LL_USART_SetHWFlowCtrl(USARTx, USART_InitStruct->HardwareFlowControl);
/*---------------------------- USART BRR Configuration -----------------------
* Retrieve Clock frequency used for USART Peripheral
*/
LL_RCC_GetSystemClocksFreq(&rcc_clocks);
if (USARTx == USART1)
{
periphclk = rcc_clocks.PCLK2_Frequency;
}
else if (USARTx == USART2)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#if defined(USART3)
else if (USARTx == USART3)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#endif /* USART3 */
#if defined(USART6)
else if (USARTx == USART6)
{
periphclk = rcc_clocks.PCLK2_Frequency;
}
#endif /* USART6 */
#if defined(UART4)
else if (USARTx == UART4)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#endif /* UART4 */
#if defined(UART5)
else if (USARTx == UART5)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#endif /* UART5 */
#if defined(UART7)
else if (USARTx == UART7)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#endif /* UART7 */
#if defined(UART8)
else if (USARTx == UART8)
{
periphclk = rcc_clocks.PCLK1_Frequency;
}
#endif /* UART8 */
#if defined(UART9)
else if (USARTx == UART9)
{
periphclk = rcc_clocks.PCLK2_Frequency;
}
#endif /* UART9 */
#if defined(UART10)
else if (USARTx == UART10)
{
periphclk = rcc_clocks.PCLK2_Frequency;
}
#endif /* UART10 */
else
{
/* Nothing to do, as error code is already assigned to ERROR value */
}
/* Configure the USART Baud Rate :
- valid baud rate value (different from 0) is required
- Peripheral clock as returned by RCC service, should be valid (different from 0).
*/
if ((periphclk != LL_RCC_PERIPH_FREQUENCY_NO)
&& (USART_InitStruct->BaudRate != 0U))
{
status = SUCCESS;
LL_USART_SetBaudRate(USARTx,
periphclk,
USART_InitStruct->OverSampling,
USART_InitStruct->BaudRate);
/* Check BRR is greater than or equal to 16d */
assert_param(IS_LL_USART_BRR_MIN(USARTx->BRR));
}
}
/* Endif (=> USART not in Disabled state => return ERROR) */
return (status);
}
/**
* @brief Set each @ref LL_USART_InitTypeDef field to default value.
* @param USART_InitStruct Pointer to a @ref LL_USART_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct)
{
/* Set USART_InitStruct fields to default values */
USART_InitStruct->BaudRate = 9600U;
USART_InitStruct->DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct->StopBits = LL_USART_STOPBITS_1;
USART_InitStruct->Parity = LL_USART_PARITY_NONE ;
USART_InitStruct->TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct->HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct->OverSampling = LL_USART_OVERSAMPLING_16;
}
/**
* @brief Initialize USART Clock related settings according to the
* specified parameters in the USART_ClockInitStruct.
* @note As some bits in USART configuration registers can only be written when the USART is disabled (USART_CR1_UE bit =0),
* USART IP should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param USARTx USART Instance
* @param USART_ClockInitStruct Pointer to a @ref LL_USART_ClockInitTypeDef structure
* that contains the Clock configuration information for the specified USART peripheral.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: USART registers related to Clock settings are initialized according to USART_ClockInitStruct content
* - ERROR: Problem occurred during USART Registers initialization
*/
ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct)
{
ErrorStatus status = SUCCESS;
/* Check USART Instance and Clock signal output parameters */
assert_param(IS_UART_INSTANCE(USARTx));
assert_param(IS_LL_USART_CLOCKOUTPUT(USART_ClockInitStruct->ClockOutput));
/* USART needs to be in disabled state, in order to be able to configure some bits in
CRx registers */
if (LL_USART_IsEnabled(USARTx) == 0U)
{
/*---------------------------- USART CR2 Configuration -----------------------*/
/* If Clock signal has to be output */
if (USART_ClockInitStruct->ClockOutput == LL_USART_CLOCK_DISABLE)
{
/* Deactivate Clock signal delivery :
* - Disable Clock Output: USART_CR2_CLKEN cleared
*/
LL_USART_DisableSCLKOutput(USARTx);
}
else
{
/* Ensure USART instance is USART capable */
assert_param(IS_USART_INSTANCE(USARTx));
/* Check clock related parameters */
assert_param(IS_LL_USART_CLOCKPOLARITY(USART_ClockInitStruct->ClockPolarity));
assert_param(IS_LL_USART_CLOCKPHASE(USART_ClockInitStruct->ClockPhase));
assert_param(IS_LL_USART_LASTBITCLKOUTPUT(USART_ClockInitStruct->LastBitClockPulse));
/*---------------------------- USART CR2 Configuration -----------------------
* Configure USARTx CR2 (Clock signal related bits) with parameters:
* - Enable Clock Output: USART_CR2_CLKEN set
* - Clock Polarity: USART_CR2_CPOL bit according to USART_ClockInitStruct->ClockPolarity value
* - Clock Phase: USART_CR2_CPHA bit according to USART_ClockInitStruct->ClockPhase value
* - Last Bit Clock Pulse Output: USART_CR2_LBCL bit according to USART_ClockInitStruct->LastBitClockPulse value.
*/
MODIFY_REG(USARTx->CR2,
USART_CR2_CLKEN | USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL,
USART_CR2_CLKEN | USART_ClockInitStruct->ClockPolarity |
USART_ClockInitStruct->ClockPhase | USART_ClockInitStruct->LastBitClockPulse);
}
}
/* Else (USART not in Disabled state => return ERROR */
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Set each field of a @ref LL_USART_ClockInitTypeDef type structure to default value.
* @param USART_ClockInitStruct Pointer to a @ref LL_USART_ClockInitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct)
{
/* Set LL_USART_ClockInitStruct fields with default values */
USART_ClockInitStruct->ClockOutput = LL_USART_CLOCK_DISABLE;
USART_ClockInitStruct->ClockPolarity = LL_USART_POLARITY_LOW; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */
USART_ClockInitStruct->ClockPhase = LL_USART_PHASE_1EDGE; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */
USART_ClockInitStruct->LastBitClockPulse = LL_USART_LASTCLKPULSE_NO_OUTPUT; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* USART1 || USART2 || USART3 || USART6 || UART4 || UART5 || UART7 || UART8 || UART9 || UART10 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,752 @@
/**
******************************************************************************
* @file stm32f4xx_ll_utils.c
* @author MCD Application Team
* @brief UTILS LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_ll_utils.h"
#include "stm32f4xx_ll_rcc.h"
#include "stm32f4xx_ll_system.h"
#include "stm32f4xx_ll_pwr.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32F4xx_LL_Driver
* @{
*/
/** @addtogroup UTILS_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Constants
* @{
*/
#if defined(RCC_MAX_FREQUENCY_SCALE1)
#define UTILS_MAX_FREQUENCY_SCALE1 RCC_MAX_FREQUENCY /*!< Maximum frequency for system clock at power scale1, in Hz */
#endif /*RCC_MAX_FREQUENCY_SCALE1 */
#define UTILS_MAX_FREQUENCY_SCALE2 RCC_MAX_FREQUENCY_SCALE2 /*!< Maximum frequency for system clock at power scale2, in Hz */
#if defined(RCC_MAX_FREQUENCY_SCALE3)
#define UTILS_MAX_FREQUENCY_SCALE3 RCC_MAX_FREQUENCY_SCALE3 /*!< Maximum frequency for system clock at power scale3, in Hz */
#endif /* MAX_FREQUENCY_SCALE3 */
/* Defines used for PLL range */
#define UTILS_PLLVCO_INPUT_MIN RCC_PLLVCO_INPUT_MIN /*!< Frequency min for PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MAX RCC_PLLVCO_INPUT_MAX /*!< Frequency max for PLLVCO input, in Hz */
#define UTILS_PLLVCO_OUTPUT_MIN RCC_PLLVCO_OUTPUT_MIN /*!< Frequency min for PLLVCO output, in Hz */
#define UTILS_PLLVCO_OUTPUT_MAX RCC_PLLVCO_OUTPUT_MAX /*!< Frequency max for PLLVCO output, in Hz */
/* Defines used for HSE range */
#define UTILS_HSE_FREQUENCY_MIN 4000000U /*!< Frequency min for HSE frequency, in Hz */
#define UTILS_HSE_FREQUENCY_MAX 26000000U /*!< Frequency max for HSE frequency, in Hz */
/* Defines used for FLASH latency according to HCLK Frequency */
#if defined(FLASH_SCALE1_LATENCY1_FREQ)
#define UTILS_SCALE1_LATENCY1_FREQ FLASH_SCALE1_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */
#endif
#if defined(FLASH_SCALE1_LATENCY2_FREQ)
#define UTILS_SCALE1_LATENCY2_FREQ FLASH_SCALE1_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */
#endif
#if defined(FLASH_SCALE1_LATENCY3_FREQ)
#define UTILS_SCALE1_LATENCY3_FREQ FLASH_SCALE1_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */
#endif
#if defined(FLASH_SCALE1_LATENCY4_FREQ)
#define UTILS_SCALE1_LATENCY4_FREQ FLASH_SCALE1_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 1 */
#endif
#if defined(FLASH_SCALE1_LATENCY5_FREQ)
#define UTILS_SCALE1_LATENCY5_FREQ FLASH_SCALE1_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 1 */
#endif
#define UTILS_SCALE2_LATENCY1_FREQ FLASH_SCALE2_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */
#define UTILS_SCALE2_LATENCY2_FREQ FLASH_SCALE2_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */
#if defined(FLASH_SCALE2_LATENCY3_FREQ)
#define UTILS_SCALE2_LATENCY3_FREQ FLASH_SCALE2_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */
#endif
#if defined(FLASH_SCALE2_LATENCY4_FREQ)
#define UTILS_SCALE2_LATENCY4_FREQ FLASH_SCALE2_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 2 */
#endif
#if defined(FLASH_SCALE2_LATENCY5_FREQ)
#define UTILS_SCALE2_LATENCY5_FREQ FLASH_SCALE2_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 2 */
#endif
#if defined(FLASH_SCALE3_LATENCY1_FREQ)
#define UTILS_SCALE3_LATENCY1_FREQ FLASH_SCALE3_LATENCY1_FREQ /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */
#endif
#if defined(FLASH_SCALE3_LATENCY2_FREQ)
#define UTILS_SCALE3_LATENCY2_FREQ FLASH_SCALE3_LATENCY2_FREQ /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */
#endif
#if defined(FLASH_SCALE3_LATENCY3_FREQ)
#define UTILS_SCALE3_LATENCY3_FREQ FLASH_SCALE3_LATENCY3_FREQ /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */
#endif
#if defined(FLASH_SCALE3_LATENCY4_FREQ)
#define UTILS_SCALE3_LATENCY4_FREQ FLASH_SCALE3_LATENCY4_FREQ /*!< HCLK frequency to set FLASH latency 4 in power scale 3 */
#endif
#if defined(FLASH_SCALE3_LATENCY5_FREQ)
#define UTILS_SCALE3_LATENCY5_FREQ FLASH_SCALE3_LATENCY5_FREQ /*!< HCLK frequency to set FLASH latency 5 in power scale 3 */
#endif
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Macros
* @{
*/
#define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_512))
#define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_16))
#define IS_LL_UTILS_APB2_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB2_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_16))
#define IS_LL_UTILS_PLLM_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLM_DIV_2) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_3) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_4) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_5) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_6) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_7) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_8) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_9) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_10) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_11) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_12) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_13) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_14) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_15) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_16) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_17) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_18) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_19) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_20) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_21) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_22) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_23) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_24) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_25) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_26) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_27) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_28) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_29) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_30) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_31) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_32) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_33) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_34) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_35) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_36) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_37) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_38) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_39) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_40) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_41) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_42) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_43) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_44) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_45) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_46) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_47) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_48) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_49) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_50) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_51) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_52) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_53) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_54) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_55) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_56) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_57) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_58) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_59) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_60) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_61) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_62) \
|| ((__VALUE__) == LL_RCC_PLLM_DIV_63))
#define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((RCC_PLLN_MIN_VALUE <= (__VALUE__)) && ((__VALUE__) <= RCC_PLLN_MAX_VALUE))
#define IS_LL_UTILS_PLLP_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLP_DIV_2) \
|| ((__VALUE__) == LL_RCC_PLLP_DIV_4) \
|| ((__VALUE__) == LL_RCC_PLLP_DIV_6) \
|| ((__VALUE__) == LL_RCC_PLLP_DIV_8))
#define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__) ((UTILS_PLLVCO_INPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX))
#define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__) ((UTILS_PLLVCO_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_OUTPUT_MAX))
#if !defined(RCC_MAX_FREQUENCY_SCALE1)
#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \
((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3))
#elif defined(RCC_MAX_FREQUENCY_SCALE3)
#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \
(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \
((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3))
#else
#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \
((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2))
#endif /* RCC_MAX_FREQUENCY_SCALE1*/
#define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \
|| ((__STATE__) == LL_UTILS_HSEBYPASS_OFF))
#define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN) && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup UTILS_LL_Private_Functions UTILS Private functions
* @{
*/
static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct);
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
static ErrorStatus UTILS_PLL_IsBusy(void);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup UTILS_LL_Exported_Functions
* @{
*/
/** @addtogroup UTILS_LL_EF_DELAY
* @{
*/
/**
* @brief This function configures the Cortex-M SysTick source to have 1ms time base.
* @note When a RTOS is used, it is recommended to avoid changing the Systick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param HCLKFrequency HCLK frequency in Hz
* @note HCLK frequency can be calculated thanks to RCC helper macro or function @ref LL_RCC_GetSystemClocksFreq
* @retval None
*/
void LL_Init1msTick(uint32_t HCLKFrequency)
{
/* Use frequency provided in argument */
LL_InitTick(HCLKFrequency, 1000U);
}
/**
* @brief This function provides accurate delay (in milliseconds) based
* on SysTick counter flag
* @note When a RTOS is used, it is recommended to avoid using blocking delay
* and use rather osDelay service.
* @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which
* will configure Systick to 1ms
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
void LL_mDelay(uint32_t Delay)
{
__IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */
/* Add this code to indicate that local variable is not used */
((void)tmp);
/* Add a period to guaranty minimum wait */
if(Delay < LL_MAX_DELAY)
{
Delay++;
}
while (Delay)
{
if((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U)
{
Delay--;
}
}
}
/**
* @}
*/
/** @addtogroup UTILS_EF_SYSTEM
* @brief System Configuration functions
*
@verbatim
===============================================================================
##### System Configuration functions #####
===============================================================================
[..]
System, AHB and APB buses clocks configuration
(+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 180000000 Hz.
@endverbatim
@internal
Depending on the device voltage range, the maximum frequency should be
adapted accordingly to the Refenece manual.
@endinternal
* @{
*/
/**
* @brief This function sets directly SystemCoreClock CMSIS variable.
* @note Variable can be calculated also through SystemCoreClockUpdate function.
* @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro)
* @retval None
*/
void LL_SetSystemCoreClock(uint32_t HCLKFrequency)
{
/* HCLK clock frequency */
SystemCoreClock = HCLKFrequency;
}
/**
* @brief Update number of Flash wait states in line with new frequency and current
voltage range.
* @note This Function support ONLY devices with supply voltage (voltage range) between 2.7V and 3.6V
* @param HCLK_Frequency HCLK frequency
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Latency has been modified
* - ERROR: Latency cannot be modified
*/
ErrorStatus LL_SetFlashLatency(uint32_t HCLK_Frequency)
{
uint32_t timeout;
uint32_t getlatency;
uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */
ErrorStatus status = SUCCESS;
/* Frequency cannot be equal to 0 */
if(HCLK_Frequency == 0U)
{
status = ERROR;
}
else
{
if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1)
{
#if defined (UTILS_SCALE1_LATENCY5_FREQ)
if((HCLK_Frequency > UTILS_SCALE1_LATENCY5_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_5;
}
#endif /*UTILS_SCALE1_LATENCY5_FREQ */
#if defined (UTILS_SCALE1_LATENCY4_FREQ)
if((HCLK_Frequency > UTILS_SCALE1_LATENCY4_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_4;
}
#endif /* UTILS_SCALE1_LATENCY4_FREQ */
#if defined (UTILS_SCALE1_LATENCY3_FREQ)
if((HCLK_Frequency > UTILS_SCALE1_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_3;
}
#endif /* UTILS_SCALE1_LATENCY3_FREQ */
#if defined (UTILS_SCALE1_LATENCY2_FREQ)
if((HCLK_Frequency > UTILS_SCALE1_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_2;
}
else
{
if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_1;
}
}
#endif /* UTILS_SCALE1_LATENCY2_FREQ */
}
if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2)
{
#if defined (UTILS_SCALE2_LATENCY5_FREQ)
if((HCLK_Frequency > UTILS_SCALE2_LATENCY5_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_5;
}
#endif /*UTILS_SCALE1_LATENCY5_FREQ */
#if defined (UTILS_SCALE2_LATENCY4_FREQ)
if((HCLK_Frequency > UTILS_SCALE2_LATENCY4_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_4;
}
#endif /*UTILS_SCALE1_LATENCY4_FREQ */
#if defined (UTILS_SCALE2_LATENCY3_FREQ)
if((HCLK_Frequency > UTILS_SCALE2_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_3;
}
#endif /*UTILS_SCALE1_LATENCY3_FREQ */
if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_2;
}
else
{
if((HCLK_Frequency > UTILS_SCALE2_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_1;
}
}
}
#if defined (LL_PWR_REGU_VOLTAGE_SCALE3)
if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE3)
{
#if defined (UTILS_SCALE3_LATENCY3_FREQ)
if((HCLK_Frequency > UTILS_SCALE3_LATENCY3_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_3;
}
#endif /*UTILS_SCALE1_LATENCY3_FREQ */
#if defined (UTILS_SCALE3_LATENCY2_FREQ)
if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_2;
}
else
{
if((HCLK_Frequency > UTILS_SCALE3_LATENCY1_FREQ)&&(latency == LL_FLASH_LATENCY_0))
{
latency = LL_FLASH_LATENCY_1;
}
}
}
#endif /*UTILS_SCALE1_LATENCY2_FREQ */
#endif /* LL_PWR_REGU_VOLTAGE_SCALE3 */
LL_FLASH_SetLatency(latency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
timeout = 2;
do
{
/* Wait for Flash latency to be updated */
getlatency = LL_FLASH_GetLatency();
timeout--;
} while ((getlatency != latency) && (timeout > 0));
if(getlatency != latency)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
return status;
}
/**
* @brief This function configures system clock at maximum frequency with HSI as clock source of the PLL
* @note The application need to ensure that PLL is disabled.
* @note Function is based on the following formula:
* - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP)
* - PLLM: ensure that the VCO input frequency ranges from @ref RCC_PLLVCO_INPUT_MIN to @ref RCC_PLLVCO_INPUT_MAX (PLLVCO_input = HSI frequency / PLLM)
* - PLLN: ensure that the VCO output frequency is between @ref RCC_PLLVCO_OUTPUT_MIN and @ref RCC_PLLVCO_OUTPUT_MAX (PLLVCO_output = PLLVCO_input * PLLN)
* - PLLP: ensure that max frequency at 180000000 Hz is reach (PLLVCO_output / PLLP)
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Max frequency configuration done
* - ERROR: Max frequency configuration not done
*/
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status = SUCCESS;
uint32_t pllfreq = 0U;
/* Check if one of the PLL is enabled */
if(UTILS_PLL_IsBusy() == SUCCESS)
{
/* Calculate the new PLL output frequency */
pllfreq = UTILS_GetPLLOutputFrequency(HSI_VALUE, UTILS_PLLInitStruct);
/* Enable HSI if not enabled */
if(LL_RCC_HSI_IsReady() != 1U)
{
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1U)
{
/* Wait for HSI ready */
}
}
/* Configure PLL */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN,
UTILS_PLLInitStruct->PLLP);
/* Enable PLL and switch system clock to PLL */
status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
}
else
{
/* Current PLL configuration cannot be modified */
status = ERROR;
}
return status;
}
/**
* @brief This function configures system clock with HSE as clock source of the PLL
* @note The application need to ensure that PLL is disabled.
* - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP)
* - PLLM: ensure that the VCO input frequency ranges from @ref RCC_PLLVCO_INPUT_MIN to @ref RCC_PLLVCO_INPUT_MAX (PLLVCO_input = HSI frequency / PLLM)
* - PLLN: ensure that the VCO output frequency is between @ref RCC_PLLVCO_OUTPUT_MIN and @ref RCC_PLLVCO_OUTPUT_MAX (PLLVCO_output = PLLVCO_input * PLLN)
* - PLLP: ensure that max frequency at 180000000 Hz is reach (PLLVCO_output / PLLP)
* @param HSEFrequency Value between Min_Data = 4000000 and Max_Data = 26000000
* @param HSEBypass This parameter can be one of the following values:
* @arg @ref LL_UTILS_HSEBYPASS_ON
* @arg @ref LL_UTILS_HSEBYPASS_OFF
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Max frequency configuration done
* - ERROR: Max frequency configuration not done
*/
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status = SUCCESS;
uint32_t pllfreq = 0U;
/* Check the parameters */
assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency));
assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass));
/* Check if one of the PLL is enabled */
if(UTILS_PLL_IsBusy() == SUCCESS)
{
/* Calculate the new PLL output frequency */
pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct);
/* Enable HSE if not enabled */
if(LL_RCC_HSE_IsReady() != 1U)
{
/* Check if need to enable HSE bypass feature or not */
if(HSEBypass == LL_UTILS_HSEBYPASS_ON)
{
LL_RCC_HSE_EnableBypass();
}
else
{
LL_RCC_HSE_DisableBypass();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1U)
{
/* Wait for HSE ready */
}
}
/* Configure PLL */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN,
UTILS_PLLInitStruct->PLLP);
/* Enable PLL and switch system clock to PLL */
status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
}
else
{
/* Current PLL configuration cannot be modified */
status = ERROR;
}
return status;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup UTILS_LL_Private_Functions
* @{
*/
/**
* @brief Function to check that PLL can be modified
* @param PLL_InputFrequency PLL input frequency (in Hz)
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @retval PLL output frequency (in Hz)
*/
static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct)
{
uint32_t pllfreq = 0U;
/* Check the parameters */
assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM));
assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN));
assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP));
/* Check different PLL parameters according to RM */
/* - PLLM: ensure that the VCO input frequency ranges from @ref UTILS_PLLVCO_INPUT_MIN to @ref UTILS_PLLVCO_INPUT_MAX MHz. */
pllfreq = PLL_InputFrequency / (UTILS_PLLInitStruct->PLLM & (RCC_PLLCFGR_PLLM >> RCC_PLLCFGR_PLLM_Pos));
assert_param(IS_LL_UTILS_PLLVCO_INPUT(pllfreq));
/* - PLLN: ensure that the VCO output frequency is between @ref UTILS_PLLVCO_OUTPUT_MIN and @ref UTILS_PLLVCO_OUTPUT_MAX .*/
pllfreq = pllfreq * (UTILS_PLLInitStruct->PLLN & (RCC_PLLCFGR_PLLN >> RCC_PLLCFGR_PLLN_Pos));
assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(pllfreq));
/* - PLLP: ensure that max frequency at @ref RCC_MAX_FREQUENCY Hz is reached */
pllfreq = pllfreq / (((UTILS_PLLInitStruct->PLLP >> RCC_PLLCFGR_PLLP_Pos) + 1) * 2);
assert_param(IS_LL_UTILS_PLL_FREQUENCY(pllfreq));
return pllfreq;
}
/**
* @brief Function to check that PLL can be modified
* @retval An ErrorStatus enumeration value:
* - SUCCESS: PLL modification can be done
* - ERROR: PLL is busy
*/
static ErrorStatus UTILS_PLL_IsBusy(void)
{
ErrorStatus status = SUCCESS;
/* Check if PLL is busy*/
if(LL_RCC_PLL_IsReady() != 0U)
{
/* PLL configuration cannot be modified */
status = ERROR;
}
#if defined(RCC_PLLSAI_SUPPORT)
/* Check if PLLSAI is busy*/
if(LL_RCC_PLLSAI_IsReady() != 0U)
{
/* PLLSAI1 configuration cannot be modified */
status = ERROR;
}
#endif /*RCC_PLLSAI_SUPPORT*/
#if defined(RCC_PLLI2S_SUPPORT)
/* Check if PLLI2S is busy*/
if(LL_RCC_PLLI2S_IsReady() != 0U)
{
/* PLLI2S configuration cannot be modified */
status = ERROR;
}
#endif /*RCC_PLLI2S_SUPPORT*/
return status;
}
/**
* @brief Function to enable PLL and switch system clock to PLL
* @param SYSCLK_Frequency SYSCLK frequency
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: No problem to switch system to PLL
* - ERROR: Problem to switch system to PLL
*/
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status = SUCCESS;
uint32_t hclk_frequency = 0U;
assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->AHBCLKDivider));
assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider));
assert_param(IS_LL_UTILS_APB2_DIV(UTILS_ClkInitStruct->APB2CLKDivider));
/* Calculate HCLK frequency */
hclk_frequency = __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider);
/* Increasing the number of wait states because of higher CPU frequency */
if(SystemCoreClock < hclk_frequency)
{
/* Set FLASH latency to highest latency */
status = LL_SetFlashLatency(hclk_frequency);
}
/* Update system clock configuration */
if(status == SUCCESS)
{
/* Enable PLL */
LL_RCC_PLL_Enable();
while (LL_RCC_PLL_IsReady() != 1U)
{
/* Wait for PLL ready */
}
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
/* Wait for system clock switch to PLL */
}
/* Set APB1 & APB2 prescaler*/
LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider);
LL_RCC_SetAPB2Prescaler(UTILS_ClkInitStruct->APB2CLKDivider);
}
/* Decreasing the number of wait states because of lower CPU frequency */
if(SystemCoreClock > hclk_frequency)
{
/* Set FLASH latency to lowest latency */
status = LL_SetFlashLatency(hclk_frequency);
}
/* Update SystemCoreClock variable */
if(status == SUCCESS)
{
LL_SetSystemCoreClock(hclk_frequency);
}
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/